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1. Introduction

It is well known that highly structured systems of linear

algebraic equations arise when Helmholtz's equation

(l.l) -Au+cu = f , c = constant ,

is discretized "by finite difference or finite element methods using

uniform meshes. This is true, in particular, for problems on a

region O which permits the separation of the variables. Very fast

and highly accurate numerical methods are now readily available to

solve separable problems at an expense which is comparable to that

of a few steps of any simple iterative procedure applied to the

linear system; see Bank and Rose [2,3], Buneman [5], Buzbee, Golub

and Nielson [8], Fischer, Golub, Hald, Leiva and Widlund [l6],

Hockney [24,26], Swarztrauber [50,51], Swarztrauber and Sweet

[52^53] and Sweet [54]- Adopting common usage, we shall refer to

such methods as fast Poisson solvers.

The usefulness of these algorithms has been extended in

recent years to problems on general bounded regions by the develop-

ment of capacitance matrix, or imbedding, methods; see Buzbee and

Dorr [6], Buzbee, Dorr, George and Golub [7], George [19], Hockney

[25,27], Martin [35], Polozhii [4o], Proskurowski [41,42,43],

Proskurowski and Widlund [44,45], Shieh [46,47,48] and Widlund

[57] • We refer to Proskurowski and Widlund [44] for a discussion

of this development up to the beginning of 1976. All of the

numerical experiments reported in those papers were carried out

for regions in the plane. Strong results on the efficiency of



certain of these methods have been rigorously established through

the excellent work of Shieh [46,47,48]. Algorithms similar to

those which we shall describe have recently been implemented very

successfully for two-dimensional regions by Proskurowski [42,43]

and Proskurowski and Widlund [45]. In that work, a new fast

Poisson solver, developed by Banegas [1 ], has been used exten-

sively; see Section 5. We note that the performance of computer

programs implementing capacitance matrix algorithms depends very

heavily on the efficiency of the fast Poisson solver, and if

properly designed, they can be easily upgraded by replacing that

module when a better one becomes available.

In this paper, we shall extend the capacitance matrix method

to problems in three dimensions. The mathematical framework, using

discrete dipole layers in the Dirichlet case, is an extension of

the formal discrete potential theory developed in Proskurowski and

Widlund [44] . We note that these algorithms must be quite

differently designed in the three-dimensional case. As in two

dimensions the fast Poisson calculations strongly dominate the

work. The number of these calculations necessary to meet a given

tolerance remains virtually unchanged when the mesh size is

refined. We have developed a FORTRAN program for Cartesian co-

ordinates and the Dirichlet problem, which turns out to be techni-

cally more demanding than the Neumann case. This program has been

designed to keep storage requirements low. The number of storage

locations required is one or two times N, the number of mesh points

in a rectangular parallelepiped in which the region is imbedded,

and a modest multiple of p, the number of mesh points which belong



to the region O and are adjacent to its boundary. A further sub-

stantial reduction of storage can be accomplished for very large

problems by using the ideas of Banegas [1], see further Section 5.

In the second section, we discuss the imbedding idea.

Following a review of classical potential theory, we derive our

capacitance matrix methods in Section 3- Section 4 focuses on

algorithmic aspects which are of crucial importance in the develop-

ment of fast, reliable and modular computer code. We solve the

capacitance matrix equations by conjugate gradient methods. These

methods, originally used in a similar context by George [19], are

reviewed in that section. We also discuss how spectral information

and approximate inverses of the capacitance matrices can be

obtained and used at a moderate cost in computer time and storage.

The fast Poisson solver which is used in our program is described

in Section 5. It is numerically stable even for negative values of

the coefficient c of the Helmholtz operator. Finally, we give

details on the organization of our computer program and results

from numerical experiments. These tests were designed to be quite

severe and the method has proved efficient and reliable.

A listing of our program is provided as an appendix. It has

been checked by the CDC ANSI FORTRAN verifier at the Courant

Mathematics and Computing Laboratory of New York University. It

has been run successfully on the CDC 660O at the Courant Institute,

a CDC 7600 at the Lawrence Berkeley Laboratory and the Amdahl

47OV/6 at the University of Michigan.

Acknowledgements . The authors want to thank John G. Lewis,

wTodzimierz Proskurowski and Arthur Shieh for their interest and

help with this project.
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2. Discrete Helmholtz Problems and. Imbedding

2.1. The Imbedding of the Discrete Problem

In this section, we shall discuss how discretizations of the

problem

-Au+ cu = f on O ,

with a boundary condition and data given on hO, can be imbedded in

problems for which fast Poisson solvers can be used. In the second

subsection, we describe in detail how these ideas apply to the

finite difference scheme which we have used in our numerical

experiments

.

The efficiency of capacitance matrix methods depends on the

choice of appropriate finite difference and finite element meshes.

Interior parts of the mesh should be made regular in the sense that

the linear equations at the corresponding mesh points match those

of a fast Poisson solver. We denote the set of these mesh points

t)y O, where h is a mesh width parameter. The set of the remaining,

irregular mesh points is denoted by ^O, • These points are typi-

cally located on or close to the boundary ^O and the discrete equa-.

tions associated with them are computed from local information on

the geometry of the region. For efficiency, the number of unknowns

associated with the points ia So, should be kept small, since the

equations and other information required at the regular mesh points

are inexpensive to generate and can be stored in a very compact

form.

If we work in Cartesian coordinates it is natural to imbed our

open, bounded region O in a rectangular parallelepiped and to use



a rectangular mesh. Other choices which permit the separation of

the variables on the larger region, can equally well be chosen. On

the larger region a mesh suitable for a fast Poisson solver is intro-

duced which coincides with the regular part of the mesh previously

introduced for the region Q. The position of the larger region

relative to O is largely arbitrary but when using discrete dipoles

(see Section 3 )j we need a layer of exterior mesh points, one mesh

width thick, outside of Ov.^U^O, . We shall use some or all of the

discrete equations at exterior mesh points to expand our original

linear system into one which is of the same size as the one which

is solved by the fast Poisson solver. The set of mesh points

corresponding to these equations is denoted by CO-..

Before we describe how these larger systems of equations

are derived, we shall show by two examples how these sets of mesh

points can be constructed. We first consider a Dirichlet problem

solved by a classical finite difference scheme on a rectangular

mesh. The values of the approximate solution are sought at the

mesh points which belong to O. The discretization of the Helmholtz

operator on the larger region induces, for each mesh point, a

neighborhood of points used by its stencil. A mesh point in O be-

longs to n, if and only if all its relevant stencil neighbors are

in O.and hO, is the set of the remaining mesh points in O. The set
' h

CO, is the set of all mesh points which belong to the complement

of O- It thus includes any mesh point which is on the boundary hO.

As a second example, consider a Neumann problem for Laplace's

equation in two dimensions solved by a finite element method with

piecewise linear trial functions. The region is approximated by a
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union of triangles using a regular triangulation, based on a uni-

form mesh, in the interior of the region. The set O, will then

correspond to the set of equations which are not affected by the

particular geometry of the region. Values of the discrete solution

are also sought at the vertices on the boundary. These points

normally fail to lie on a regular mesh. They belong to So, to-

gether with certain mesh points which are close to the boundary.

Each irregular point can be assigned to a close-by mesh point of

the regular mesh which covers the larger region and we then define

CO, as the set of remaining, exterior mesh points. There are a

number of permissible ways in which this assignment can be made.

Similar constructions can be carried out for higher order accurate

finite element methods; see Proskurowski and Widlund [45] for

further details.

Let us write the expanded linear system in the form

(2.1) Au = b

where u is the vector of values of the discrete solution at the

mesh points and the components of b are constructed from the func-

tion f and the data given on hO. By construction, our formulas for

the interior and irregular mesh points do not involve any coupling

to exterior mesh points, and the matrix is therefore reducible,

i.e. there exists a permutation matrix P such that

T
P AP = ^

f^ll

A A
V 21 22
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The block matrix A-,-, represents the approximation of the problem

on O, U^, . It is clear from the structure of this system that the

restriction of the solution of the system (2.1) to this set is

independent of the solution and the data at the exterior points.

Our methods also produce values of a mesh function for the points

of COr^ hut they are largely arbitrary and useless. Similarly, we

must provide some extension of the data to the set CO, , but the

performance of the algorithms is only marginally affected by this

choice.

Let B denote the matrix representation of the operator

obtained by using the basic discretization at all the mesh points.

Only those rows of A and E which correspond to the irregular mesh

points differ provided the equations and unknowns are ordered in

the same way. We can therefore write

A = B + UZ^ ,

where U and Z have p columns, with p equal to the number of ele-

ments of the set ^O,. It is convenient to choose the columns of Uh

to be unit vectors in the direction of the positive coordinate axes

corresponding to the points of ^O, . The operator U is then an

extension operator which maps any mesh function, defined only on

bo, , onto a function defined on all mesh points. The values on So,

are retained while all the rer^aining values are set equal to zero.

TThe transpose of U, U , is a restriction, or trace, operator which

maps any mesh function defined everywhere onto its restriction to

bo, . The matrix Z can, with this choice of U, be regarded as a

compact representation of A-B, obtained by deleting the zero rows



corresponding to the equations for the mesh points in O, U CO, • It

is important to note that Z and U are quite sparse, a reflection

of the sparsity of A and B.

In Sections 3 and h, we shall discuss efficient and stable

ways of solving the linear system (2.1).

2.2. The Shortley-Weller Scheme

We shall now discuss the finite difference scheme which has

been used in our numerical experiments to solve the Dirichlet

problem and also describe how the necessary information on the

geometry of the boundary is handled.

The second order accurate Shortley-Weller formula (see

Collatz [9], Chap. 5.1 or Forsythe and Wasow [I7], Sec. 20.7) can

be understood as the sum of three point difference approximations

for the second derivative with respect to each of the three inde-

pendent variables. The value at the nearest mesh neighbor in each

positive and negative coordinate direction is used unless this

neighbor belongs to the set CO, . In that case the Dirichlet data

at the point of intersection of the mesh line and the boundary is

used.

As an example, suppose that the mesh spacings in the x, y and

z directions are all equal to h. Consider an irregular mesh point,

with indices (i,j,k), which has two exterior neighbors in the x

direction and one in the positive y direction. Let 5 , 5 and
— X "tX

5 be the distances to the boundary, in the respective coordinate

directions, measured in units of the mesh size h and let g ? g,

and g be the Dirichlet data at th_ corresponding points on the



boundary hO. Then our approximation to -Au +cu = f at this

irregular point is.

(2/(5^ 5 ) + 2/6
,

+ 2 + ch^)u. .,

- (2/(l+5^y))u,^j_i^i, - u. .^^^^ - u. .^^_^

h^f . ., + (2/(5^ + 5^ 5 ) )g^ijk ^
'^ ^ +x +x -x' ^^+x

+ (2/(5^ + 5^ 5 ))g + (2/(5^ + 5^ ) )g^
^ ' ^ -X +x -X ^-x +y +y +y

At the regular points the formula reduces to a simple seven point

approximation.

The Shortley-Weller formula has a matrix of positive type.

This permits the use of the classical error estimates based on a

discrete maximum principle, as in the references given above. The

only information required on the geometry of the region is the

coordinates of the irregular mesh points and the distances along

the mesh lines from each such point to the boundary. This appears

to be close to the minimum information required by any method with

more than first order accuracy. See Proskurowski and Widlund [44],

Pereyra, Proskurowski and Widlund [39] and Strang and Fix [49] for

more details. This geometrical information is also sufficient to

construct higher order accurate approximations to the Helmholtz

equation, as in Pereyra, Proskurowski and Widlund [39] where a

family of methods suggested by Kreiss is developed. These methods

have proven quite effective for two dimensional problems but their

usefulness is limited by the requirement that each irregular mesh
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point must have several interior mesh neighbors along each mesh

line. This requirement is met by shifting the. region and refining

the mesh if necessary. Although this is practical in two dimen-

sions, it is much more difficult for three dimensional regions.

We are free to scale the rows of the matrix A which corre-

spond to the irregular mesh points. The choice of scaling is

important since it affects the rate of convergence of our iterative

method. Based on the analysis given in the next section, the

experience in the two dimensional case (see Proskurowski and

Widlund [-^"^
] ) and our numerical experiments, we have chosen to make

all diagonal elements of A equal to one.
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3 . Potential Theory and Discrete Dlpoles

3.1. The Continuous Case

In this section, we shall give a brief survey of certain

results of classical potential theory and also develop an analo-

gous, formal theory for the discrete case. We shall mainly follow

the presentation of Garabedian [18] when discussing the continuous

case, specializing to the case of c = 0. A discrete, formal theory

has previously been developed by Proskurowski and Widlund [44] but

our presentation in Sections 3-2 - '^ .'k will be more complete in

several respects.

We first introduce the volume, or Newton, potential

(3.1) u^(x) = (l/^ir) J f(0/r d|

where x - {x-^,x^,^), ^ = {^^,i^,^) and r = ((x^- ^^) + [x^ - i^)

+ (x^ -1^)^) • We note that (l/4Tr)(l/r) is a fundamental solu-

tion of the operator -A, i.e.,

-Au^ = f .

A single layer potential, with a charge density p, is given by,

(3.2) %^{x) = {l/2jr) J p(|)/r da

and a double layer potential, with a dipole moment density \x, by

(3.3) VM = {l/2Tr) J n(|)(V^v^)(l/r)da .

Here v denotes the normal of the bour.aary hO directed towards the
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interior of O- By V and "V' , we denote the limits of ">' when

the boundary is approached from the outside and inside respectively

ajid similar notations are also used for the limits of '/r . The func-

tions -2^ and '^/^ are real analytic functions in the complement

of ho. By using a Green's formula one can establish that '2' and

h'^^y^v are continuous and that jiomp conditions hold for S'?^/Sv

and '%''
; see Garabedian [18], Chapter 9' Thus, for a region with a

smooth boundary,

hV^'-^/hv - ( + ) p + il/2ir) J p(V^v^)(l/r)da ,

bo

>r^^^ = (-) H + {l/2ir)J p(V^v^)(l/r)do ,

ho

With the aid of these relations the Neumann and Dirichlet problems

can be reduced to Fredholm integral equations. For the interior

Neumann problem,

-Au = f in O ,

hu/hv = gp. on So ,

we make the Ansatz,

u(x) = u^(x) +'V{^) .

The boundary condition is satisfied by choosing p such that
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h-ryhv = -p + (l/27r) j"p(V^v^)(l/r)da

an

(3.4) " % ~ (V^)u^
ao

This equation can be written as (l-K)p = -g, where K is a compact

operator defined by the formula above. It is a Fredholm integral

equation of the second kind with a simple zero eigenvalue. Since

2 2
K is compact in L the integral operator I-K is bounded in L and

it has an inverse of the same form on a space of codimension one.

Equation (3''^) is solvable if g is orthogonal to the left eigen-

function of (l-K) corresponding to the zero eigenvalue. In this

case this simply means that g should have a zero mean value. By

using the same Ansatz for the exterior Neumann problem, we obtain

an integral equation with the operator I+K.

If we use the same single layer Ansatz for the interior

Dirichlet problem, with data g , we get an integral equation of the

first kind,

(l/27r) / p/r do = g^ - u,.(l/27r) j p/r do =
gj^

- u^

ha

This operator does not have a bounded inverse in Lp. The use of

an analogous Ansatz for the discrete Dirichlet problem gives rise

to capacitance matrices which become increasingly ill-conditioned

as the mesh is refined.

The Ansatz

u(x) = u^(x) +Mx) ,

which employs a double layer potential, leads to a Fredholm
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integral equation of the second kind?

'}f-
= ix + {l/2Tr) J [iih/hv^Hl/r)da

(3.5)
=^^^-^U*

T T
The integral operator is now I+K , where K is the transpose of the

operator introduced when solving the Neumann problems. We shall

obtain well-conditioned capacitance matrices when using a discrete

analogue of this approach.

The close relationship between the integral equations for the

interior Dirichlet and exterior Neiimann problems is used to

establish the solvability of the Dirichlet problem; see Garabedian

[18], Chapter 10. A similar argument is given in Section 3.3 for

a discrete case.

The integral operator K is not symmetric except for very

special regions. Nevertheless it has real eigenvalues; see e.g.

Kellogg [32], p. 309. For future reference, we also note that

there exist variational formulations of the Fredholm integral equa-

tions given in this section; see Nedelec and Planchard [37] . It

can be shown that the mapping defined by the single layer potential

'Y is an isomorphism from H~ ''^ (^)/P to the subspace of ir"(o)/P

of weak solutions of Laplace's equation. Here H (o) is the space

of functions with square integrable first distributional deriva-

tives, H / (hn) the space of traces of H (o), H~ ^Cdo) the space

1/2dual to H ' (^O), and P the space of constants. By substituting

the single layer potential into the standard variational formula-

tion of the interior Neumann problem and using a Green's formula.



15

an alternative formulation is obtained. The resulting bilinear

form is coercive on H" "'"'^^
( So )

/P^ and is equivalent to equation

(3.4).

Before we turn to the discrete problems, we note that, in the

theory just developed, the function (l/47r)(l/r) can be replaced by

other fundamental solutions of the Laplace operator. In particular,

we can use a Green's function for a rectangular parallelepiped in

which the region O is imbedded. The theory can also be extended,

in a straightforward way, to Helmholtz's equation with a nonzero

coefficient c.

3.2. Discrete Potential Theory

We now return to the solution of Au = b, (equation (2.1))

with A = B +\]Z^ . Guided by the theory for the continuous case, we

shall develop two algorithms, one suitable for the Neumann and the

other for the Dirichlet case.

We shall assume that B is invertible. This is not a very

restrictive assumption since we have a great deal of freedom to

choose the boundary conditions on the larger region.

We recall from Section 2.1 that the columns of U were chosen

to be unit vectors corresponding to the irregular mesh points. If

we order the points of Oj^ first, followed by those of ho^ and CO^,

we can obtain the representation.

U =

^0^

^°y
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where I is a pxp identity matrix. Let us, in analogy to the con-

tinuous case, make the Ansatz

(3.6) u = Gb + GWs

where the vector s has p components, G is the inverse of B, and W

has the form

W =

^0^

The operator G plays a role very similar to that of ^a fundamental

solution for the continuous problem. The second term GWs corre-

sponds to a single or double layer potential. For additional

flexibility, we have introduced the mesh function b which coincides

with b except possibly at the irregular points of So, • In particu-

lar, if the Helmholtz equation has a zero right hand side, we can

often choose b = 0, eliminating the first term of the Ansatz. To

arrive at an equation for the vector s, we calculate the residual,

b-Au = b -(B+ UZ^ ) ( Gb + GWs )

= (b-b)-UZ^Gb- (l+UZ^G)Ws .

From the form of b, U, and W, we have the following result:

Lemma 3

1

• The residuals for the system (2.1) corresponding to the

points of O, are zero for any choice of the vector s in (3 •6). If

the matrix W-;, is zero they also vanish at all points of GO. •

We now demand that the residuals vanish on the set ^Q, :

h

- U^(b -Au) = U^(b-b)- Z^Gb -U^AGWs .
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This gives us a system of p equations:

(3.7) Cs = U^AGWs = (u\+z'^G¥)s = U^(b-b) - Z^Gb ,

where C is the capacitance matrix. We ignore the residuals

on the set CO, since the extension of the data to this set is
h

largely arbitrary. It follows from the reducible structure of A

that if the capacitance matrix C is nonsingular the restriction of

the mesh function u, given by formula {^.6), solves the discrete

Helmholtz equation. We shall now discuss two choices of the matrix

W and study the invertibility of the resulting matrices.

For a Neumann problem, our choice of W should correspond to

a single layer Ansatz. We therefore choose W = U and note that the

T
capacitance matrix G = U AGU is then the restriction of AG to the

subspace corresponding to the set SOj^. Using equations (3.6) and

(3.7), we find,

~ /T x-l/T~ T/ ~\x
u = Gb -GU(U AGU) (Z-^Gb - U (b-b ) ) .

This is, for b = b, the well known Woodbury formula; see

Householder [29]. For completeness, we give a proof of the

following result.

Theorem 3.1. The capacitance matrix C„ is singular if and only if

the matrix A is singular. For b = b the equation (3.7) fails to

have a solution if and only if b does not lie in the range of A.

Proof: Let cj) be a nontrivial element of the null space of C

T
Then since C„ = I + Z GU, the vector

Z^GUcj) = -cj)

N'
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is nonzero and therefore GUif) cannot vanish identically. But

AGUcj) = UC„(f) = and therefore A is singular. Let now ijj belong to

T
the null space of C^ and assume that

^^(Z^Gh) = (^^Z^G)b ^ .

Then b does not belong to the range of A since

mm m m m m
A G Z^ = (B +ZU )G Z^ = ZCp^^ = .

Finally given data for equation (2.1), which does not belong to the

range of A, equation (5.7) cannot be solvable since otherwise formula

(^•6) would provide a solution of equation (2.1).

The Woodbury formula is popular for computation, especially

when the rank p of A-B is small. In our application, p is usually

very large, often exceeding 1000. This precludes the computation

and storage of the dense, nonsymmetric matrix C^. We must there-

fore solve the pxp linear system,

(3.8) ^N^
" U^(b-b) - Z^Gb ,

by an iterative method which does not require the explicit calcu-

lation of the elements of C„; see further Section 4. We see from

equation (3-6) that in addition to solving the system {j> -Q ), we

need only to solve at most two simple Helmholtz problems on the

entire mesh in order to complete the calculation of the solution u.

Our main task is therefore the efficient solution of equation

(3.8).
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The efficiency of the iterative solution of equation (3«8)

depends crucially on the distribution of the singular values of C„.

The choice ¥ = U is suitable for Neumann problems, since it is

based on a single layer Ansatz,but it gives rise to increasingly

ill-conditioned capacitance matrices if applied to Dirichlet

problems

.

An alternative to the Woodbury formula gives well-conditioned

capacitance matrices for the Dirichlet problem. ¥e shall special-

ize to a case of a uniform rectangular mesh; cf. Section 2.2. Our

choice of W should correspond to a double layer potential. Let

W = VD, where D is a square diagonal matrix of nonzero scale fac-

tors and each column of V represents a discrete dipole of unit

strength associated with an irregular mesh point. The solution to

our problem is then

u = Gb - GVD(U^AGVD)"^(Z^Gb -U^(b-b))

T
and the capacitance matrix is C^^ = U AGVD.

We would like to construct the discrete dipoles by placing a

positive unit charge at an irregular mesh point and a negative unit

charge at another point located on the exterior normal through the

irregular point. Since the data for the fast Poisson solver must

be given at mesh points only, we instead divide this negative

charge and place it on three mesh points. As an example, consider

an irregular mesh point with indices (i,j,k), for which the

exterior normal through this mesh point lies in the positive

octant. Let the distances, measured in units of the mesh size, to

the boundary along the three positive coordinate axes be 5 -,, 5 „
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and 5 ^ respectively. Let further < b ^-^ < b
_^^

< 6_^^. ¥e find

the first of the three mesh points for the negative charges by

moving in the positive x-, -direction, the direction of the smallest

distance, to the point (i+l,j,k). The weight for this point is

-(1-5 -,/& o)« We then proceed in the Xp-direction, the direction

of the medium distance, to the point (i+l,j+l,k) which is given the

weight - (5^-^/5 _^2
"

^+l/^+3 * ^^^ ^^ finally go to the point (i+1,

j+l,k+l) which is given the weight -5_^-,/6_|_^ . We note that all these

are nonpositive and that their sum equals -1. Assuming that the

boundary hO is smooth enough, we find by expanding the expression

V V in a Taylor series, that it equals h [hv/'dv ) + o{h) where

(3.9) h^ = h5^^(6^^-^+6^2'^+^+3'^)^'^^

For future reference, we note that the area, A^^ , of the triangle

with vertices at the intersections of the boundary and the mesh

lines through the irregular mesh point is

2/^x. , , ,, -2 _ -2 _ -2,1/2
A,
5 - (h/2)5^^5^2^3^^^ ^^2" +^3" ^

For a region with a smooth boundary none of the mesh points

used in the discrete dipole construction belong to the set O, pro-

vided that the mesh is fine enough. ¥e shall assume that this

condition is satisfied and reject any problem which violates it.

For an irregular mesh point which, along the same mesh line, is

within h of the boundary in both the positive and negative direc-

tions, we use the smaller distance of the two in the dipole con-

struction, resolving a tie in an arbitrary way.
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3.3' The Invertibility of the Matrix Cj.

An attempt to prove that C^ is nonsingular, modeled strictly

on the proof of Theorem 5.1, is not successful and some additional

ideas must be introduced. The proof of the following theorem is in

an important part due to Arthur Shieh.

Theorem 3.2 . Assume that the discrete Helmholtz problem is

uniquely solvable, that c _> 0, and that the matrix B is of positive

type. Assume further that any mesh function of the form GUip takes

on a maximum or a minimum. Then the capacitance matrix C„ is

invertible

.

Remark. The last assumption of this theorem is of course always

satisfied if the number of mesh points is finite. It must be veri-

fied for fast solvers on regions with an infinite number of points;

cf. Section 5-

Proof: We begin as in our proof of Theorem 3.1. To simplify our

notations, we choose D = I. Suppose that there exists an eigen-

vector (j) such that C t|) = U AGVcj) = 0. The mesh function AGV({) there-

fore vanishes on ^O^^ and by Lemma 3.1^ it also vanishes on O, .

Since the discrete problem represented by the matrix A-,-, is

uniquely solvable, the mesh fimction GVcf) vanishes for all

x e 0|,.^ U ^i.^. Conversely if there exists a nontrivial vector tj) such

that GV(|) is identically zero on O, U ^O, , then by the reducible
h " ^ h'

structure of A, C„(f) = 0.

To conclude, we must prove that there exists no nontrivial

discrete dipole potential which vanishes identically onO, uSo, •

We shall work with a very primitive approximation of the Dirichlet
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problem, since the particular choice of the rows of A corre-

sponding to the points of ^O^ is of no importance in this context

and also use a simple approximation of an exterior Neumann problem.

After a suitable symmetric permutation, which we suppress in order

to simplify our notations, we write the discrete Helmholtz operator

on the entire mesh in the form.

11
B
12

B21
B B.

A

22 25

"^2 ^5
y

Here the subscripts 1, 2 and 3 refer to the interior, irregular and

exterior mesh points, respectively. Our interior Dirichlet problem

is simply chosen so that

/"^ N

D

11
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The exterior Neumann problem is approximated by

r

^N
"

B
11 ^12

^2

B52

5
"33J

Using a single layer Ansatz, the capacitance matrix becomes

'N^ T T
S = ^2^22 ^^3^32

By the symmetry of the operator G, we obtain

^D " ^N ^

cf. the continuous case. By the arguments given in the proof of

Theorem 3-1 the matrix C„ is invertible if

A^GU^ =

only for ip = 0. Let c = 0. Since, by assumption, GUiIj attains an

extremal value and A clearly satisfies a discrete maximum princi-

ple, we can conclude that GU^ is a constant and that then

BGU^ = U^ = 0. This argument can easily be modified for the case

of c > and the proof is therefore concluded.

We note that the assumptions of this theorem, except for the

invertibility of the matrix A,.,, were used solely to prove that the

null spaces of A and B coincide. We also note that one of the

arguments given in a similar context in Proskurowski and Widlund

[44] is incorrect. The proof given above can be modified to give

rather crude, but still quite useful estimates of the condition

number of the matrix C„^ see Shieh [48]

.
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3 .3 • The Choice of Scale Factors

The capacitance matrix equation (3-7) is solved by iterative

methods and it is therefore quite important to use a suitable

scaling of the variables and the equations. When choosing the

scaling, we shall be guided by an interpretation of equation (3 '7)

as approximations of the well conditioned continuous problems (3 •4)

and (3.5 )• We shall only discuss the Dirichlet case, since a

discussion of the Neumann problem adds little new, and also

specialize to the case when c = 0.

The scaling of C,^ is carried out by choosing the matrix D and

T T
the row sums of U A or equivalently the row sums of Z . It is easy

to see that these are strictly positive in the special case con-

sidered in Section 2.2 and that this property holds for any other

consistent approximation of the Dirichlet problem for Laplace's

equation. We shall now show that it is appropriate to choose D=I
Tand to make the row sums of Z equal to two.

With this choice of D the first term of the capacitance

Tmatrix C„ equals U V; see (3.7). In the typical case where all the

mesh points corresponding to the negative weights belong to CO, ,

T
U V = I. When we turn to the other term, we first note that it can

be shown, by elementary arguments, that with the choice of scaling

of the matrix B consistent with the formulas in Section 2.2, h G,

regarded as a mesh function, approximates r(x, |), a fundamental

solution of the Laplace operator. In Section 3-2, we have inter-

Tpreted V as a difference operator in the normal direction. We

- 1 Tfind that (hh^) Z GV formally converges to 2^r/Sv* since the opera-

Ttor Z is a local difference operator with a combined weight equal
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to two; see (3 •9). By using finite difference theory or by

studying the discrete fundamental solution directly, we can show

that this convergence is point-wise for any x y^ ^ . See Shieh [46]

or Thomee [55] • We note, however, that this convergence fails to

be uniform. See further discussion below.

TWe want to interpret the vector Z CrY\i as a numerical quadra-

ture approximation of the corresponding term

(3-10) 2
J

hr/^v^[ido

of a Fredholm integral equation similar to equation (3.5). We note

that the factor 2 is appropriate since the function (l/2Tr)(l/r)

appearing in that equation is twice a fundamental solution of the

Laplace operator. To verify that our choice of scalings gives a

formally convergent approximation, we must consider the density of

the discrete dipoles and the area elements to be assigned to them.

Since the distances between the dipoles vary in a highly irregular

way, we shall consider local averages over patches of the boundary

with a diameter on the order of /h. Over an area of that size the

direction of the normal can be regarded as a constant. ¥e shall

specialize to the case discussed in Section 3-2, in which the dis-

crete dipoles were introduced, and use the same notations. In the

patch considered there is then one irregular mesh point within a

distance of h to the boundary along any mesh line through the patch

parallel to the x.-axis. The area A , previously computed, should

therefore be compared with the area (h /2)5 p5 of the other rele-

vant face of the polyhedron with vertices at the irregular point
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and the intersections of the mesh lines and the boundary. Each

dipole should therefore be assigned the weight,

-2 -2 -2 1/2 -2 -2 -2 1/2
^l^2^3 ^^1 + ^2 + ^^ ^ ^^2^3 = ^l^^l ^ ^2 + ^3 ^ = ^^/^ •

T
Combining these observations, we see that Z GV|j. formally converges

to the integral (5. 10).

It is natural to ask if the singular values of C„ converge to

those of the integral operator. This is not in general the case,

a fact intimately related to the non-uniform distribution of the

irregular mesh points. The study of this question is of very con-

siderable difficulty. Following Shieh [46^47,48]? let

^D = \ + ^h '

where B, represents the coupling between irregular mesh points

which are within jYi of each other. With the scaling introduced

above K, converges pointwise to the correct integral operator.

However, the operator B, is not in general a formally convergent

approximation of the identity operator, but for certain important

finite difference schemes and general plane regions Shieh [46,47,

48] has been able to show that the spectral condition number of B,
h

can be be bounded independently of h. These results, combined with

the crude estimates of the spectral condition number C mentioned

in the previous subsection, suffice to show that the number of con-

jugate gradient steps required for a specific decrease of the error

grows only in proportion to log (l/h). See also Proskurowski [4l,

"^2,^3], Proskurowski and Widlund [44,45] and Section 6 of this

paper for numerical evidence.
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4. Capacitance Matrix Algorithms

4.1. The Generation of the Capacitance Matrix

We have previously pointed out that the central problem in

our work is the efficient solution of equation (3-7 )• In this

section, we shall examine various alternatives.

We shall first consider the cost of computing the capacitance

matrices C = u'^AGU and C^^ = U AGV respectively. These are px p

dense nonsymmetic matrices where p is the number of variables

T T T
associated with the set ^y^* Since the matrices U A, U and V

have only a few non-zero elements per row, the computation of an

individual element of C or C^ requires only a modest number of

arithmetic operations if the elements of G are known. Since the

order of G is at least as large as the number of mesh points in

O, U ^Y^} the computation and storage of all its elements is out of

the question. Alternatively, columns of C^ or C^ can be computed

one at a time using the fast solver once per column of GU or GV.

For problems in three dimensions the cost would be enormous.

The number of arithmetic operations can be reduced drasti-

cally by using a device described already in Widlund [56] • The

separable problem can be made periodic or the larger region can

otherwise be chosen without a boundary. In the absence of a

boundary, the problem becomes translation invariant in the sense

that the solution at any mesh point, due to a single point charge

at another mesh point, depends only on the difference of the co-

ordinates of the two mesh points. One use of the fast Poisson
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solver, with a discrete delta function as data, provides one column

of the matrix of G. By this observation, all elements of G are

then easily available from this one solution. Given a column of G,

the entire capacitance matrix can then be found at an expense

2
"Which grows in proportion to p . This cost is thus of the same

order of magnitude as the evaluation of a numerical quadrature

approximation of the integral equations of the classical potential

theory (see, for example, (5 •5)) employing a comparable number of

quadrature points. At an expense of p /3 multiplications and

additions, a triangular factorization of the capacitance matrix

can be computed by Gaussian elimination. The solution of the

capacitance matrix equation (3.7) can then be found at an

2additional expense of p additions and multiplications.

If the capacitance matrix is available, the equation (3-7)

can also be solved by iterative methods at an expense of

2 2between p and 2p additions and multiplications per step; see fur-

ther Proskurowski and Widlund [44] . When using an iterative

method of this kind, the elements of the capacitance matrix can

either be stored, possibly on a secondary mass storage device, or

they can be regenerated whenever they are needed.

In two dimensions the number of irregular mesh points typi-

1/2cally grows only in proportion to N while in three dimensions

2 A
the growth is proportional to N ^

. Many problems in the plane can

be solved satisfactorily using a value of p which is less than 200

but in three dimensions values of p in excess of 1000 occur even

for quite coarse meshes. We must therefore find alternative
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algorithms which do not require the storage or direct manipulation

of the large capacitance matrices unless we are willing to accept

a very substantial number of arithmetic operations and the use of

out of core storage devices.

To put the methods discussed so far in some perspective, we

compare them with known results on symmetric Gaussian elimination

methods applied to standard finite difference problems in two and

three dimensions. For problems in two dimensions Hoffman, Martin

and Rose [28] have shown that the number of non-zero elements of

the triangular factors must grow at least in proportion to

N logp N. George [20] has designed such optimal methods and also

3/2
shown that at least N multiplications and additions are lequired

to carry out the faci:orization step. The corresponding best

4/3
bounds for three dimensional problems are on the order of N and

2
N respectively; see Eisenstat [13]? Eisenstat, Schultz and

Sherman [ l4] .

We shall now demonstrate that we can compute the product of

a capacitance matrix and any vector t at a much smaller expense.

In the next subsections, we shall show how such products can be

used in efficiently solving equation (3.7) by iterative

methods. We note that in their original form these ideas are due

to George [19] • We shall specialize this discussion to the dis-

TCrete dipole case, C-p^t = U AGVt, but similar remarks can be made

for the discrete Neumann problem.

We first note that the generation of the mesh function Vt

can be carried out using only on the order of p operations on a

three dimensional array initialized to zero. The fast Poisson
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solver is then applied to give GVt and only on the order of p

.^. - J^A(GVt). Similarly C^1operations are then needed to obtain C^t = U A(GVt). Similarly C^t

can be obtained, if so desired, by using a factored form of the

T
matrix. The sparse matrices U A and V can be computed from the

coordinates of the irregular points and other local information on

the geometry of the region using only on the order of p arithmetic

operations. Since it is inexpensive to generate these matrices,

we can choose to recompute their non-zero elements whenever they

are needed but they could also be stored at a cost of on the order

of p storage locations.

T
We remark that when U AGVt is computed from GVt only a small

fraction of the values of this mesh function is needed. Similarly

the vector Vt is very sparse. This has inspired the development of

fast Poisson solvers which exploit the sparsity inherent in

problems of this kind; see further discussion in Section 5-

4.2. The Use of the Standard Conjugate Gradient Method

We shall first review some material on conjugate gradient

methods and then discuss their use in solving equation (3 .7 ) •

Let Mv = c be a linear system of equations with a symmetric,

positive definite matrix M. The k-th iterate v, of the conjugate

gradient method can then be characterized as the minimizing

element for the problem,

(4.1) min ^ v^Mv - v'^c .

fk)
Here S^ ' is the subspace spanned by the first k elements of the
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Krylov sequence.

2
r ,Mr ,M r , . .

o' o o

where r = c - Mv is the initial residual and v is the initial
o o o

guess. See further Hestenes and Stiefel [23] or Luenberger [3^]

-

The k-th iterate is thus of the form

V, = V + R
-,
(M)r ,

k o k-1^ ^ o

where P is some polynomial of degree k-1. The quadratic form in
K,— J-

(4.1) differs from the error functional

E(v^) = i (v^- vfmiv^-v) ,

only by an irrelevant constant term. Here v is the exact solution.

The optimality result (4.1) and an expansion of the initial error

V - V in the eigenvectors of M easily leads to the estimate

(4.2) E(v,) < min max (1-AP, .(a))^E(v ) ,

where a(M) is the spectrum of M. See further Daniel [ ], Kaniel-

[31] or Luenberger [34] . This inequality remains valid if eigen-

values corresponding to modes absent from the initial error are

ignored when forming the maximum in (4.2). This is important since

it allows us the use of the method and the estimate for semi-

definite problems if the data and initial guess lie in the range of

the operator.

From inequality (4.2) and a special construction of the poly-

nomial P, in terms of Chebyshev polynomials, the estimate
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(4.3) E(Vj^) < (2(l-lA)V((l + l/A)^^+ (l-l/v^)^^)^E(v^) ,

is easily obtained; see references given above. Here /c is the

spectral condition number of the operator M. When this ratio /c of

eigenvalues of M is computed, we can again ignore eigenvalues

corresponding to modes which are absent from the initial error.

A convenient way of implementing the conjugate gradient

algorithm is as follows:

Let V be an initial guess. Compute

(4.4)
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We note that the use of this algorithm requires no a priori

information on the spectrum of M. By a standard result, the

residual vectors r, are mutually orthogonal; see Luenberger [^h] .

In order to use this algorithm to solve the Dirichlet

problem, we first form the normal equations equivalent to equation

(^•T) and obtain,

C^Cj^s = C^(-Z^Gb -U (b-b)) .

T
We expect that the new matrix C^C_ will still be quite well

conditioned. The product of it and an arbitrary vector can be

obtained by the methods described in Section 4.1.

In our experience the inequality (4.3 )
gives realistic bounds

for Helmholtz problems with non-negative values of c . If a

negative value of c is chosen so that the discrete Helmholtz

operator is almost singular, the capacitance matrix must have at

least one small singular value. By analogy with the continuous

case, we however expect that there will only be a few such values ,

well separated from the rest of the spectrum. Bounds, much

improved in comparison with (4.3 ), can therefore be obtained from

inequality (4.2) by constructing polynomials which vanish at the

isolated small eigenvalues of M and are small over the interval

containing the rest of the spectrum. A similar idea was used by

Hayes [21], who proved that the conjugate gradient algorithm is

superlinearly convergent when applied to a Fredholm integral equa-

tion of the second kind. See Widlund [57] and Proskurowski

and Widlund [44] for further discussion . Such arguments are also

central in the work of Shieh [47] . He was able to prove that all
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except a fixed number of singular values of certain capacitance

matrices for problems in the plane lie in a fixed interval while

the remaining few are no closer than Kh^, K and q constants, from

the origin. A construction of polynomials as indicated above leads

to a bound for the number of iterations required to obtain a pre-

scribed reduction of the error. This bound grows only in propor-

tion to log (l/h)

.

The algorithm described in this section can equally well be

used for the capacitance matrix equation (3.8).

4.3 • An Alternative Conjugate Gradient Algorithm for Neumann

Problems

We shall now describe an alternative conjugate gradient

method, which can be used with the single layer Ansatz for discrete

Helffiholtz problems with positive semi-definite symmetric coeffi-

cient matrices. It has the advantage that a normal equation formu-

lation of the capacitance matrix equation can be avoided and the

cost per step is therefore reduced by a factor two. That such a

reduction is possible is not immediately apparent since the con-

tinuous analogue of the capacitance matrix is a nonsymmetric opera-

tor. The search for a method of this kind was inspired by the

variational formulation of the Fredholm integral equations men-

tioned in subsection 3-1- This algorithm has recently been

implemented successfully by Proskurowski and Widlund [^5] for a

finite element approximation of the two dimensional Neumann problem.

Consider the solution of a linear system of the form
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Ax = b

where A is a positive semi-definite, symmetric operator. We make

the Ansatz

X = Gy

where G is a suitable, strictly positive definite symmetric opera-

ed t

rl/2,

~l/2
tor. A new variable is now introduced by z = G ' y and the re-

sulting equation is multiplied by G"

^1/2-^1/2^ =^1/2,
^

The new operator is symmetric, positive semi-definite while AG in

general fails to be symmetric. The standard conjugate gradient

algorithm is applied to this transformed system and the final

algorithm is then obtained by returning to the variable y.

Carrying out this substitution, we find that the formulas

given in Section 4.2 must be modified in two respects:

Replace the operator M by AG when calculating the residuals

by formulas (4.4) and (4.5).

In the calculation of the parameters a, and 6, , in fomiulas
k k

(4.6) and (4.8), replace the inner products r r, and Pi^Mp, by

r Gr and p G A Gp, respectively.

The error estimates (4.2) and (4.3) apply in this case. The

relevant spectrum is now that of the operator AG.

In our application A is the operator corresponding to the

discretization of the Helmholtz problem on the original region O,

and G the restriction of the operator G to the set O, U^O^^^. No

extension of the operator A to a larger region is necessary. If
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the right-hand side b vanishes on the set O, then so will the

vector y, since the solution x can be expressed as a discrete

single layer potential. The iteration can therefore be organized

using only vectors with p components. A version of the algorithm

has been designed which requires only one application of operator

G in each step. For details see Proskurowski and Widlund [45]

.

In our problem the possibility of using the sparsity of the

vectors y, gives this algorithm an advantage over the generalized

conjugate gradient algorithm considered by Concus, Golub and

O'Leary [10] and others; see also Hestenes [22]. Their algorithm

is obtained from ours by using the iterates x, = Gy . The vectors

X, fail to be sparse in our applications.

4.4 . Estimates of the Singular Values and Approximate Inverses of

Capacitance Matrices

¥e have previously pointed out that the residuals r, of the

conjugate gradient method are orthogonal. By combining formulas

(4.5) and (4.7), eliminating the vectors p, , we obtain,

Mr = -(l/a )r^ + (l/a )r ,
o ^ol ^'oo

(4.9)

Mr^ = -^l/°^k^^k+l+^l/«k + \-l/"k-l)^k- ^^-l/^k-l^Vl •

(k)Let R^ ' be a matrix with its k columns chosen as the normalized

residual vectors. Using the definition of the parameter p, , the

formulas (4.9) can be rewritten as,

^(k) ^ R(k)j(k)_ (/p—^/ (a^_Jr^|))r^eT ^
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Here e, is a unit vector in the direction of the positive k-th

coordinate direction and J^ the symmetric, tridiagonal matrix.

f 1/a

J
(k)

o '^ o'^ o
A

P /a (l/ctn + p /a ) -/p. /a.

y

Using the orthogonality of the residuals, we find that

i.e. J^ '^ is a matrix representation of the restriction of the

operator M to the space spanned by the vectors r , . . . , r, -, . This

space can easily be shown to be the same as the Krylov subspace

S^ -which was defined in Section 4.2. See further Engeli,

Ginsburg, Rutishauser and Stiefel [ 15 ]

.

We shall exploit these facts in two ways. Approximations of

the eigenvalues of M are obtained from the eigenvalues of J^ .

The eigenvalues of J^ ' interlace those of J^ ' and improved

estimates of the largest and smallest eigenvalues of M and a lower

bound for its condition number are therefore obtained in each step.

This procedure is in fact a variant of a well known eigenvalue

algorithm due to Lanczos [33]. The extreme eigenvalues of J^ '

often converge quite rapidly. See for example, Kanlel [^1] and

Paige [38] . In our problems we quickly obtain realistic estimates

of the condition number of M. This idea has proven a very useful

tool in the development of our algorithms, in particular when

different scalings of the capacitance matrices were tested. The



cost of computing the eigenvalues of J^'^'^ is very moderate and

2grows no faster than k .

The analogy "between the capacitance matrices and the Fredholm

integral operators of the second kind inspired an attempt to com-

pute and use approximate inverses of these matrices of the form of

an identity operator plus a low rank operator. The information

contained in the matrices J^ and R^ was used as follows. ¥e

suppose that these matrices have been retained from a previous

problem with the same coefficient matrix but with different data.

The component R^^-'t of the new solution in the space S^^^ ^^^ ^^^^

be computed inexpensively by solving the tridiagonal system.

j(k)t j,(k)T^^^ -3) ,o ^ o

where v and c are the initial guess and the data for the new
o '^

problem respectively. We can then start the conjugate gradient

(k)
iteration from the initial point v -R^ 't . This procedure re-

o o

quires kp+2k-l additional storage locations. The computational

cost is modest since the improved initial guess essentially only

requires the calculation of k inner products of length p and the

fk)linear combination R^ a . The same improved initial guess could

also be obtained by using a variable metric algorithm for the first

set of data, with the identity matrix as a first approximation of

the Hessian, and then using the updated Hessian in the calculation

of the second solution. See Broyden [4 ], Huang [30] and Myers

[36]. We note that our method clearly retains only the minimum of

necessary information to obtain the projection of the new solution

onS^^).
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5 . Fast Poisson Solvers in Three Dimensions

In this section, we shall describe several variants of a

Fourler-Toeplitz method for the discrete Helmholtz equation on a

region for which the variables can be separated. We use a Fourier

transformation for two of the three variables and solve the tri-

diagonal linear systems of equations, which result from this change

of basis, by a Toeplitz method. See Fischer, Golub, Hald, Leiva

and Widlund [l6] and Proskurowski and Widlund [44] for descriptions

of similar algorithms for two dimensional problems. As shown by

Proskurowski [4-3], for problems in two dimensions, the execution

time of a well written code of this kind can compare quite favor-

ably with those of good programs implementing other better known

methods. We also note that Wilhelmson and Ericksen [58] have

presented strong evidence which shows that methods based on Fourier

analysis should be chosen for problems in three dimensions. Our

methods are designed so that we can guarantee a very high degree

of numerical stability for all values of the coefficient c,

positive or negative.

We shall consider the solution of the Helmholtz equation

-Au +CU = f

on the unit cube, 0^x<l, 0_<y<l, 0<z<l. Periodicity

conditions are imposed on the data and the solution by

f(x+l,y,z) = f(x,y+l,z) = f(x,y,z)

and

u(x+l,y,z) = u(x,y+l,z) = u(x,y,z)
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and a homogeneous Dirichlet condition is used at z = 0,

u(x,y,0) = .

We also assume that f(x, y,0) = 0. An additional boundary condition

is required at z = 1 and will "be introduced below after a Fourier

transformation step. Our methods provide an extension of the solu-

tion to all positive values of z. The homogeneous condition at

z = also allows us to extend the solution and the data to nega-

tive values of z by making them odd functions,

f (x,y,-z) = -f (x,y,z)

and

u(x,y,-z) = -u(x,y,z) .

When necessary, we extend the data f(x,y,z) by zero for |z| > 1.

In our experience, an alternative extension, which brings the data

more gradually to zero, offers no benefits in our application.

We shall discuss in detail only the seven point difference

approximation and, to simplify our notations, we shall use the

same uniform mesh size h in the three coordinate directions. We

shall also, without loss of generality, concentrate on the case

when n = l/h is an even number. The discrete Helmholtz problem can

be written as,

2(6+hc)u. ., -u.,-, ., -u. , ., -u. .,-,,-u. .-,,ijk 1+1, jk 1-1, jk i,j+l,k i,j-l,k

2
- u. ..,-,- u. . , -,

= h f . ., .

ij,k+l ij,k-l ijk

The same periodicity and boundary conditions are used for these

difference equations.
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It is well known that the undivided second centered

difference operator, operating on periodic functions, has the

normalized eigenfunctions

(l/n)^/2(l,l, ...,1)^ and {l/n)^^'^ {1, -1, . . .
, -l)

T

corresponding to the simple eigenvalues and 4, respectively, and

the (n-2)/2 double eigenvalues 2-2 cos (27r^/n), ^ = 1, 2, . . . , (n-2 )/2,

with the eigenfunctions

(D^^^j^ = (2/n)^/^ sin (k^27r/n) ,

"^Ilik
= (2/n)^/^ cos (k^27r/n) ,

k = 0, 1, . . . ,n-l .

The change of basis resulting in the diagonalization of the

centered difference operator can "be carried out inexpensively by

a fast Fourier transform if n has many prime factors; see for

example, Cooley, Lewis and Welsh [11].

We choose to work with a partial Fourier transform, trans-

forming with respect to the two variables x and y. The resulting

2operator can then be represented as the direct sum of n tri-

diagonal Toeplitz matrices which will be of infinite order if we

consider the problem for all positive values of z. The diagonal

elements of each of these matrices are equal to one of the numbers,

o
A^

jj^

= 6 +ch -2 cos (27ri/n) - 2 cos (27rm/n) , i,m = 0,1, . . . , n/2 ,

and the off diagonal elements equal -1.

Thus, these tridiagonal systems of equations can be represen-

ted by difference equations.
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(5.1) -Vl+^^k-Vl = ^\

Here A = A. and f, and u, are values at z = kh of the appropriate
iJ, HI K K

components of the partial Fourier transform of the mesh functions

f and u. Since f(x,y,z) = for z > 1, f^ = for k > n. Once all

the components of u have been computed, the solution u can be found

for the desired values of z by an inverse fast Fourier transform.

It is well known that the fast Fourier transform algorithm is very

stable.

We solve the tridiagonal systems of equations by two differ-

ent methods.

Case 1. If |a| > 2, we use a special simple factorization of the

matrix into triangular factors. We must first choose the addi-

tional boundary condition at z = 1. For k > n the difference equa-

tion {5-1) is homogeneous and for |a| > 2 its solution has the form

u, = A|a + Bp.

2 1/2 -1
Here A and B are constants and [i = a/2 + (A /4 -l) and |j. are

the roots of the characteristic equation. We note that ||j,| > 1.

It is natural to make A = since the solution will then decay as

/v - 1^
k —* +CD . This is equivalent to the boundary condition ^v-, + ]_-M' u^

and the equation at z = 1 reduces to [in -u„_3_ = ^ f^. The

resulting nxn tridiagonal matrix can be written as
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/ M- -1 \

-1 A -1

-1 A -1

V -1 A J
We have ordered the unknowns in order of decreasing indices

(u , . . . , U-, j and used the homogeneous Dirichlet condition at z =

to obtain the last row of the matrix. This matrix has a most con-

venient factorization, as the product of two bidiagonal Toeplitz

matrices

/ 1

-l-L

-IJ-

-1

V

1

-M-

-1

N f\^

i;

-1

-1

H -1

\

V

The linear systems can therefore be solved by using very simple two

term recursion procedures which are highly stable since ||j.| > 1.

The same procedure also works well for the case when |a| =2.

Case 2 . If |a| < 2, the roots of the characteristic equation fall

inside the unit circle and we can use the three term recursion

formula (5.1) to compute u, in a stable way. Before we can use
k

this marching procedure, we need to find a value of u. to provide

a second initial value in addition to u =0. This can be done by
o ^

using the formula
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- = y^ sin (|j+k|4)- sin (|j-k|(|)) ^2^
J ^^ 2 sin ^ k

which can easily be verified to give a solution of the difference

equation. Here ^ = arccos (a/2). For j = 1, we find the simple

formula,

1 fcr 2 sin ^ k far ' "^^ k

There are other solutions of the difference equation (5.I), but the

present choice gives the same solution in the limit case |a| =2 as

the method developed for Case 1. We therefore obtain a solution of

the Helmholtz problem which is a continuous function of the parame-

ter c. We also note that by our choice of boundary conditions,

instability has been avoided for all values of the parameter c.

The method requires n (l+o(l)) storage locations and, if n

is a power of two, on the order of n (logpn+l) arithmetic opera-

tions .

Although quite efficient this algorithm does not fully

exploit the structure of our problem. During the conjugate gradi-

ent iteration the mesh functions representing the right hand sides

of the Helmholtz equation vanish except at mesh points used for

the construction of the discrete single or dipole layers.

Similarly during this main part of the calculation, we need the

solution only at the points of the stencils of the irregular mesh

points. Thus on any line parallel to a coordinate axes only a few

source and target points have to be considered.

We shall now briefly describe a method due to Banegas [ 1 ]

•

For large problems the direct and inverse Fourier transforms with



45

respect to one of the variables can "be carried out more economi-

cally by computing inner products of sparse vectors and the basis

vectors of the new coordinate system. The fast Fourier transform

should be used for the second variable because after the first

Fourier transform step the arrays will no longer be sparse. The

main advantage of this variant is that it can be implemented using

only a two-dimensional work array if the necessary information on

the coordinates and values of the source and target points is

2/3
stored elsewhere. Only on the order of N storage locations are

therefore required for the main iteration. See Banegas [ 1 ] and

Proskurowski [4-2] for more details and a discussion of the use of

a similar algorithm for Helmholtz problems in two dimensions. The

three dimensional algorithm has not yet been implemented. The

savings in storage would not show dramatically for problems in

three dimensions unless a million words of storage is available.

The calculation of the space potential terms and the final

solution can also be carried out without using arrays with n

elements. See Proskurowski [42] for a design of a third variant

of a Fourier-Toeplitz method. It requires access to all elements

of the right hand side twice but no intermediary results need to

be written on secondary storage devices. The primary storage

requirement can be reduced drastically at an expense of a modest

increase of the computational work.

We conclude this section by proving a result needed in con-

nection with Theorem 3-2. We restrict ourselves to z > and

assume, as in that theorem, that c > 0.
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Theorem 5.1. Let f have its support in < z j< 1 and let c _> 0.

The mesh function u = Gf, defined by the Fourier-Toeplitz method

of this section, takes on a maximum or a minimum.

Proof. We first consider the case of c > 0. By construction all

modes of the solution decay as z — oo . The conclusion then follows

since we need to consider only a finite subset of the mesh.

For c = 0, we partition the solution into two parts,

u = u + U-, . The function u corresponds to the lowest frequency

for which A = 2. It is easy to see that u depends only on z and

that it reduces to a linear function for z > 1. u-, has a zero

average for each z and decays as z —^ co . If u is an unbounded

function the conclusion easily follows. If u is constant for

z > 1, u takes on a maximum and a minimum on that set since any

non-trivial u-, changes sign for each z and decays as z —»• oo . If

the maximum and minimum of u on < z j< 1 are also considered, an

extremal value of u on z > can be found.
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6. Implementation of the Algorithm and Numerical Results

6.1. The Program in Outline

We have implemented a capacitance matrix algorithm for the

three-dimensional Helmholtz equation as a FORTRAN program. The

Shortley-Weller approximation of the Dirichlet boundary condition

described in Section 2.2 is used, and a normal equation form of

the capacitance matrix equation is solved by using the conjugate

gradient method described in Section 4.2. Discrete dipoles are

used as in Section 3-2.

In designing the program, clarity and ease of modification

have been prime objectives with efficiency in execution time and

storage important but secondary. The program has been successfully

checked by the CDC ANSI FORTRAN verifier on the CDC 6600 at the

Courant Institute. No machine dependent constants are used.

We shall only give an outline of the program and refer the

reader to the comments in the listing of the program for further

description of subroutine parameters and other details of organiza-

tion.

The main subroutine HELMED is the only subroutine with which

the user needs to have direct contact. The geometric information

necessary to describe the region, the data for the differential

equation, scratch storage space and convergence tolerances are

passed to this routine.

The coordinates of the irregular mesh points, altogether

3(lPl+IP2) integer values, are needed. Here IPl is the number

of irregular points with at most one neighbor on or outside the

boundary in each coordinate direction, and IP2 is the number of

remaining irregular points.
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The signed distances from the irregular mesh points to the

boundary in the x, y and z directions, 3IP1+6IP2 real values, are

also required.

The data is entered by using four real arrays. The values of

the inhomogeneous term f at the mesh points are stored in a three-

dimensional array of dimension NXxNYxNZ where NX, NY and NZ are

the number of mesh points in the different coordinate directions in

the rectangular parallelepiped in which the region is embedded.

Values of this mesh function can be set arbitrarily at mesh points

on or outside of the boundary. The boundary data, i.e. the values

of the solution at the points where mesh lines cross the boundary,

are stored in three one-dimensional arrays requiring 3IP1+6IP2

real words of storage.

In total two real three-dimensional arrays of dimension

NXxNYxNZ and eleven one-dimensional arrays are used.

One of the one-dimensional arrays is real and of dimension

max(lPl + 21P2, NXxNZ, NY x NZ ) . The remaining four integer and

six real arrays are of length IPH-2IP2. The need for array space

could be decreased by, among other things, packing the coordinates

of the irregular points into one array. If f is zero one of the

three-dimensional arrays is eliminated simply by not dimensioning

it in the calling program. In the general case this second array

could be kept on a secondary storage device with very little

degradation in the performance of the program. For a discussion

of further possible reduction of array space, see Section 5.

The conjugate gradient iteration is controlled by two input

parameters NIT, the maximum number of iterations allowed, and EPS,
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a tolerance for the norm of the residual.

Upon termination the approximate solutions of the Helmholtz

and capacitance matrix equations and the residual of the capaci-

tance matrix equation are available. The values of the three-

dimensional array containing the solution at mesh points on or out-

side of the boundary are useless byproducts of the calculation.

The capacitance matrix solution can be refined, if so desired, by

additional calls of HELMED using current values of the dipole

strength and the residual.

A sample driver is provided in our program to illustrate the

use of the HEIM5D subroutine. We note that we have found it rela-

tively convenient to describe our regions in terms of inequalities.

HELM5D calls other subroutines to set up the right-hand side

and solves the capacitance matrix equation. It is the only sub-

routine which needs to be modified in order to incorporate the

singular value estimates or the accumulation of an approximate

inverse discussed in Section 4.4. The right-hand side of the

capacitance matrix equation is calculated by the subroutine BNDRY.

The subroutines BNDRY, UTAMLT and UTATRN, all related to the finite

difference formulas near the boundary, must be changed if a differ-

ent approximation of the boundary condition is to be implemented.

The two subroutines VMULT and VTRANS depend on the discrete dipole

construction. Single layer versions of these subroutines should be

written if the program is modified to solve the Neumann problem.

The fast Poisson solver of Section 5 is implemented in sub-

routine CUBE. It uses two FFT subroutines RFORT and FORT provided

by Dr. ¥. Proskurowski, who has modified code written by Dr. J.

Cooley

.
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The product of the capacitance matrix C^ and an arbitrary-

vector is formed by calling the subroutines VMULT, CUBE and UTAMLT.

T
Similarly, the product of C„ and a vector is formed by using

UTATRN, CUBE and VTRANS.

The system also has an error checking module, HELMCK. This

subroutine checks that enough storage space has been allocated,

that the indices of the irregular points are within range, that no

irregular points are missing or listed twice and that the discrete

dipoles point out of the region.

One of the three-dimensional arrays, w, is used when checking

the geometric information for self consistency. For each irregular

point the corresponding element of w is set to indicate ^o^^ after

a check that this point has not been previously marked as irregular

or exterior. The current values of w at the six neighbors of the

point are checked for consistency by using the distances to the

boundary which are given as data. Appropriate elements of w are

then set to indicate that these points belong to O, U ^-V or CO, •

Each line of points of the three-dimensional array begins at

an outside point. In a second stage, we march across each line,

setting w to indicate CO, until an indicator of O, (signalling an

error) or ^, is encountered. We proceed along the line, setting

w elements to indicate O'^^ whenever appropriate, until we leave the

region via a point of ^^.^ • In this way an array is created which

could be used to display the subsets O, , ^, and CO, graphically.

We then use this array and the data on the distances to the bound-

ary to check that no dipole charge falls on an interior mesh point;

see Section 3*2. Finally, we make sure that no interior mesh point

has an exterior neighbor.
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Our code could be modified to perforin these checks locally,

without using a three-dimensional array.

The execution time could be reduced in several ways. In the

current program the coefficients for the difference equation at the

irregular mesh points and the dipole weights are recomputed every

time they are used. Storage of these elements would save time.

The subroutine CUBE can be replaced by a faster Poisson solver.

Overhead in subroutine calls could be reduced through the use of

COMMON.

6.2. Numerical Experiments

Extensive numerical experiments have been carried out with

our program on the CDC 660O at the Courant Institute and the Amdahl

47OV/6 at the University of Michigan. Dr. W. Proskurowski has also

kindly run some problems on a CDC 760O at the Lawrence Berkeley

Laboratory. We report in detail only on experiments carried out

on the CDC 660O using a FTN, OPT = 2, compiler and no more than

50000 words of storage for the arrays. In our experience, the

program runs about six times faster on a CDC 760O.

The runs reported have been made for problems with the solu-

2 2 2 2 2 2tions X +y + 2z and x +y - 2z , but extensive experiments with

other types of data make us confident that the performance of our

algorithm is virtually independent of the right-hand side. The

efficiency of our method as a highly specialized linear equation

solver can easily be studied for these simple solutions since there

is no truncation error. For the finest meshes, we consider only

homogeneous problems, i.e. f = 0, in order to save one three-
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dimensional array. The initial guess is always chosen to be zero.

The parameter EPS is used in the stopping criterion of the

conjugate gradient algorithm. The iteration is terminated when the

Euclidean norm of the residual of the capacitance matrix equation

drops below EPSx/lP where IP = IP1+IP2. The condition number ofmm
C C , /c(C C ), is estimated by using ideas from Section 4.4 and the

TQLl subroutine of EISPACK. The time required for this calculation

is included in the tables.

Three regions have been used in these experiments and the

results are reported in Tables 1-3- The smallest recorded times

for the execution of the fast Poisson solver are .055> .4^2 and

2.757 seconds for 8x8x9, l6 x l6 x 17 and 32x32x24 points

respectively.

¥hen we examine the tables, we note the very modest growth

in the number of iterations when the size of the problem increases.

The stability of our method is further illustrated by the very

accurate solutions obtained when the tolerance EPS is chosen to be

very small.

The experiments of Table 3 require some further comments.

Faster methods are of course available for rectangular regions.

This region has been chosen since the eigenvalues of the discrete

Laplace operator are known explicitly. We note that when c is

large and positive, as in the application of our method to the

solution of a parabolic equation by an implicit method, the con-

vergence is extremely rapid. In such applications an excellent

initial guess is also normally available. Negative values of c

lead to more difficult problems. The smallest eigenvalue of the
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operator is A . = 52.357926 ... and another eigenvalue is equal

to 205.78497-.- • The values 3^-892 and 77-91 approximate (£)a .

3 mm
and the average of the two smallest eigenvalues respectively. The

problems which are almost singular or indefinite are very ill

Tconditioned. However, only a few eigenvalues of C„C_ are very

small and the conjugate gradient method is still relatively

successful; see further discussion in Proskurowski and Widlund [44]

,

Using the approximate inverse idea of Section 4.4, improved

initial approximations for the discrete dipole strength have been

obtained for a series of problems on a spherical region. To

illustrate the performance of this method, we consider the problem

of Table 1 with 1357 unknowns. The tolerance EPS was chosen to be

. lE-4 and l4 iterations were required. Eight vectors were saved

from this run and used to construct an initial approximation of the

discrete dipole layer for two problems with solutions drastically

different from the previous one. For these subsequent problems

only 9 iterations were required to reach a comparable accuracy.

In implementing this method, precautions must be taken to

insure that round-off does not contaminate the computation. The

orthogonality of the residual vectors should be monitored and

vectors and parameters computed after loss of orthogonality must

be discarded. With careful implementation, this can be a very

effective technique and can lead to substantial savings when many

problems are to be solved for the same region.
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UlMENSIGN UU(16*i6*j.n* Lc i-TA ( 3* t (..'J ) * i CuQk j ( i, :/0u ) #

15(500)* R(500)» P(t>00)* AP(i;CO)

DIMENSION V(16*16*17)
LOGICAL IkREG

i nuOkuC 5 jj )

*

THiS IS

INLt-FlCloNT IN THAT
IN #.HICH Trlt t^cGlDN

TriGSL

cXTlRIDk N

IT FALLS On JR lUlSIut
UA

HX* r\ip OR HZ AS
Sfcc THb CGiMcNTS IN

4 SAliPLt UKiVtii ('kuGRaK TJ SuLV£ Tit HtLMriGLTZ
EQUATION DA AN AK61TKAt<'y SOONOt D 3 PiMcNSiJNAL RbGIUN
USING A MAIN SUri"(CioTlNL HtLlSD. TrilS SAflPLc FRJGKAil iS

n f'-STS =VEkY MljH r-OlNT IN A Cb3l;»

IS i'lBcODtD* TO FIND H£ iKR.oJLAR
PUINTS* I.e. TriUSL MESm POINTS IN THt KcCIJN ^HlCri nAVc

iGHdOriS. A :n(:Iv5H8Uk IS CJNSID_<tb iXTckiOK IF

THt rtJUNDAKY LJF THt htGlON.
IN THE OaCUrENT ATIiJN> H ^'ILL RlFcK TO Trie iLSH wiOTri

APPKOP-^lATC. FOK fuf<THt-R INF JKflATi GN,
SU3K1UTINI: hiLM3U.

NXD1M»16
NY01M«15
NZDJM=17
NlPDiM-SOO
NAPDIM»4C0
NIT-'ZO
tPS^l.E-t
Ri-.AD (5*130) NNX, NNY* NNZ*CC
WRITE (6*110) NNX*NNY*NNZ,CC
HX^l.cO/rLOAKNNX )

HY«l.tO/FLaAT(NNY)
HZ=l.cO/FLuAT(NNZ-l)

ktGIGN IS fc(X-AL)
2 i

t(r-J::) + »,(Z-Ga) Lc

READ (5*l'tO) A*6* C*L* AL* c ::»Ga

nJRITc (o»iZO) A*rf*C*U* aL* i;*GA

TEST EACH lESH POINT IN THt CUBE TO FI.vJ HUSt
IN THE INTERIOR OF THE RcGiON WHKh HAVt wXTlRIUk
NEIGHSORS. StT UP ARRAYS rOR THtSt iR»vtGuLAK POlNTi.

IPl-0
1P2=0
00 20 K»1*NNZ
Z=Fl OaT(k-1)*HZ
T3»C*(Z-GA)**2
DO 2C J»1»NNY
Y='FLaAT( J-i)*hY
T2=o*( Y-bt)**2
DO 20 I«1*NNX
X = FLl1AT(I-1)*HX
Tl=A*(X-AL)**2
IF ( (T1 + T2 + T3).G£.D) Gu TJ 20

(X*Y*Z) IS IN REGION. T^Sl wHLThtR IT IS AN I^KEGuLaR PQIinT.

Calculate siGNto distances to buuNOARY in cgoruinaTc
DIRECTIONS. IF ALL ARl .^T. H ThEN ThE PGI.NT IS RcbLLAK.

IF AN iKkEGULAR MESh PUiNl FALLS VERY CLQSc TO Trit

30UN0ARY* THIS CODE MIGhT FAIL. TO HANDLE SUCH A CASr.*

THE CODE NtEDS TO bi CHAiMGtO S'J THAT tITHtR Iht ASSOljTE
VALUE OF EACH SMALL OtLTA li INCKuAS^O hHILc ITS SIGN
IS KtTAlNED* OR SMALL DtLTAS ARt CUNSIDcRcD JQ 8 c ZtRO

\
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AND T-iz COk-<tSPCN'J]NG PCiiivd IS CCNSIDlRED T3 3E tXTcKlDK.
fITritR GF HtSc MGCiFlCATIONS COkkfcSPUNOS TJ A SLIGHT
PERTu«8ATiai-( OF Tht BOUNJAKr. FOR FUkTntft ADVICE UN Th1S»

1RkEG = .F/.LSE.
XT-RM-SQPT((L)-T2-T3J/A)
XPISTl=<TtR^tAL-X
XOIST£=-XTtkM+AL-X
IF (AoS(XDJSTl).Lt.HX)
IF ( AbS< XQIST2) .Lc.hX )

YTEkM-SJt- T( (3-Ti-T3)/b)
YDibTi = n t«f^*et-Y
YUlST2»-YTEk»1 + dL-Y
rF (A3S(YUlSTl),Lt.HY)
IF (AaS(Y01ST2).L:.hY)
ZTfcPM»SJRT( (D-T1-T2)/C)
ZOISTi»ZT£RM+GA-Z
ZDlST2==-ZT£Rii + GA-Z
IF (A(jS(ZaiSTi),lc.hZ)
IF ( AbS( ZJISTZ) .L c.hZ )

lK'<iG=.TRUt.
If<«-G».TKUt.

l^^:.G=•T'<tF•

lK^co=.TkuL«
IkK^G". TkGL

.

IF { .NGT.lKKbG) GJ TO 20

Wt HAVL FOJImD An i-'RtbtLAk PGIM.
OISTANC'^S IN UMTS GF h.

STGkE CJQKOINATES ANJ

IF ((A33(XJfjTi),L^.hX).AiNJ.
IF ((A!JS(YJl5Tl).Lc.fiY).ANJ.
IF ( (AdS(ZDiSTl).LL.HZ) .ANJ.
IP1=IP1+J
iCOOKud* 1P1) = I

IC0akD(2» IPl) «J
IC'JilKD(3*IPl)=K
XDIVT=XDIST1
Yr.ilST = Y01STl
ZJiST-ZDJSTi
IF (AbS(A0ISr2).LT.At}S(XLi3Ti))
IF (AQS(YDIST2).LT.fbi(Y0I>ri))
If- (Ai3S(Z0IST2).LT.faS(ZG*.Sri))
DtLTA( 1» IPl) «XJiST/hX
0ELT«(2*iPl ) = YDi:>T/HY
DELI A(i, IP1)=ZDIST/HZ
GJ TO 20

( A3S(XDIST2) .L£. HX) )

lAdi{ YuiST2 ) .Ll.HY ) )

( ABi(ZDIST2) .LE.HZ)

)

GO
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20

30
AO

CGNTiNUr.
MINSPC«IP1+2»1P2
MINSP2»f1AX0(MlNSPC*NNX»NNZ*NNr*NN/:)
WPlTt (bflOO) IPi^ il-2^,Mr'0lM*MlNi,PC*NAPaiM».1iN:>P<i
IF (MiNSPZ.GT.NAPDIh) iTDP
IF (MlNSPC.GT.NlPDir.) bTuP

SHIFT THE INFGkMAlIUN AtiJUT iHc iKRtGJLAk POINTS
WITH cXTcRlOk Nil&H'ijKS xN -iOTn A PC^ilTiVE ANJ
NfcGATIVE OlKECTiarx TO LJCATIONS iPi + l AND FuLlJWING.

IF (IP2.kO.C) GU TD ^C
DG 30 LL=1*IP^
iPlPLL*IPl+LL
INDi.Xlj"NlP'JIM-(lP2-LL )*£-i
IhiDFXl = NiP0In-lP2*LL
IDcLT=lPi*2*LL-i
OQ 30 KK=l>i
icaaku(KK*iPiPLL) »icuuki)(Kt<> inolXD
D£LTA(KK*IOcLT)=OELTA(KK, iNJEXD)
DELTA(KK,iOcLT + i)=L)tLrA(KK,INOcXD + l)

CONTINUE
IP-IP1+IP2

STOkt mZ»*2 TiMhS Gl iN V.

STOkc BOUNDARY CaNCiTiL::^ iN K*

CALL ThF SUbkOUTiNif.
AP^ ANU P.

riZ2-HZ*H2
00 5)0 K»1*NNZ
DO 50 J^ifNNY
00 50 I=1»NNX
V( 1* J*K) •-8.i;c*HZ2+CC*HZ2*( (FLUAT(i-i)<'HX)**2*(FLL]AT(J-l)*Hr)**2 + 2

l.E0*(FLJAT(K-i)*HZ)»»2)
50 CONTINUE

DO 60 LKT*l»iP
L = LKT
l-ICOGRJ(i*L)
J = IC00kL)(2»L)
K = ICU0Rl)(3»L)
IF (LkT.GT.iPl) L=iPI+2*(L-lPi)-x
X»FLOAT( l-l)«hX
Y=FLQaT( J-l)*riY
Z=FLOAT(K-i)«HZ
k(L)=(X+DfcLTA(l»L)*HX)+*c+r»Y+2.tu*Z*Z
P(L)-X*X*(Y + L)ELTA(2,L)*Hr)**<i + 2.tl.*Z*Z
AP(L) = X»X + Y»Y-f2,t0*lZ + 0tLr'x(3>L)''hZ)**2
IF (L.Lc.IPl) GO TO oO
R(L + l) = {X+Di;LTA(l»L + i)*HX)»*2 + Y*Y + 2.tO*Z*Z
P(L + l) = X*X+(Y+DtLTA(2,L*^)*HY)**f»-Z.cU*Z*Z
AP(L-»-l)-X*X*Y*Y + 2.iO*(Z + Ut.LTA(3*L+l)*H^)*»2

60 CONTINUE
M0DL=2
CALL HELf^ao («0Dc>UL>V*NXJIM,NYDI.'">NZUi:^»lPi»iP2>LLLTA»NNX/NNY»NNi

l»NIPD11*^APDlh,lC0Uftu*i.NDJ^J»CC»NlT»tP:>*S*P>P»AP» Itk)
WRITE (5»150) lER
IF ( (lER.EQ.l). Ok. (ItR.cJ. 2) ) oTCP

CHlCK ANSWrk
THt TRUE SJLUTIDN TO
U(X, Y»2) - X*X + Y^Y

TriiS SAflPLc
+ 2Z*Z.

PkUaL..,^ iS

A

A

A

A

A

A

A

A

A

4

A

A

A

A

A

A

A

A

A

A

A

A

A

A

4

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

125
126
127
123
129
130
131
132
133
13t
133
136
137
13d
13^
140
141
142
143
14t
i4i
146
147
140
149
ItO
ibi
152
i.53

11j4

It 5

it6
157
Ito
15^
it J

161
162
163
16^
163
166
16 7

163
It-I

17J
171
172
173
a7h
175
176
177
17f.

179
1^,0

ibi
162
ifc3

1P4
163
lf-6
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

t.^•AX = ;;.£(

I'.G bC K=1>NNZ
Z«FLJaT(K-i)*HZ
DO 80 J«1»NNY
Y=FLUAT{ J-1 ) tHY
L'O 7 1 = 1 ^NNX
X«FLl)AT( J-1 )*HX
t'J( I» J*K)=X»X+Y*Y*2.cO*Z*Z-UL( 1* j>K )

StT £.<f<GR .uUAL TG ZckL FJK PJINTS ON THl 'JOUNIjAKY u«
GUTSIOt THd KtblON TO lNCr<tASr. KLAOAblLlTY Of- TriL GUTPUT.

IF ( ( A*(X-AL )( »2+;;*( Y-bc ) **2+C*(Z-Gm )*»Z) .uh.L) U0( i* J» K ) «0, LO

COMPjrt THc MAXL>luri l-kkGK,

IF ( AdS(LU( if J>K) ) .bT.cMAX) ci^AX«AbS(UU( 1* J»K,) )

70 COnTHsUE
WKiTt (b*'?o) (ou( i*o>^ J* j=i*iv\x)

tiO CGNllNUr.
wPITc (6*160) rMAX

IF MOkL THAN QNu P^GQLiM IS TG bt SOLVtD LH
THt SA^it f<£;t.rJN» InSLPT CuOb HtK TG StT HJDt* V>
i'* AP, ANJ P. ;NTtS The BGUNJaRY CGNOXTIGNS IN THc CURRENT
CKOlR GF TrlL DELTAS* NGT NtCtSSAklLY Tht GRDlK BfcFGKf
HiLM30 wAS CALL!:.'Jt DO NuT CHANCL OfcLTA* ICCOKU* INUGkO*
NNX» NNY* NNZ* NXOIM* NYJIM* NZLUM, MPJIM* IPPl*
GR IPPZ. tPS* Nil, bf AMU CC MAY ^fc CHAmGEU. CaLL THE
SUBKOJTIN; AS 3lFLkc.

STGP

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

it?
16a
169
190
191
19ii

193
19<f

195
196
197
196
199
200
2Ci
202
2G3
20-^

205
206
207
20d
209
210
211
dlZ
213
21^
215
216
217
2ib

90
100

110
120

130
1^0
150
160

FG/^M

FGP f\

flbf
'f lb
FOKM
FGPM
NO C

FGKh
FG-^M

FORM
FGr r,

END
SUdK
>NNY
INTl
(3,N
REAL
*EPS

Af (1

Al (1

23 H M

,23H
AT (^

AT (4
cNTEk
AT (3
AT (7
AT ( b

fli (4

GUTIN
,.NNZ/

GcR h

I P 1 M

nCNX
*S(NI

XfloEfc.l
XfbHiPi
INL^UM S

.^ 1 N I f u M

Or\ NNX,
3H cLLiP
*3F7.3)
I6»F20.7
F6.3)
OHO uK ?

OH MAX!

:'. H-LM3D
NiP JxM,(N

GO^fNXDl
),i:U'Ui<3

OI.'ifNYDl

PDI,i),k(

)

= >17*7H i?l ' fli.>27H iPAZc AVAILAolE {NlPOlli) =

PACE NtLJcD -f io/27X>2oHSPACt AVAILABLE (NAPJIM)
SPACE iNuuJEu =*ifa)
iNNY* NNZ, AND HlLCHQLTZ ClnSTANT >3I7,F20.7)
SGIJAL kijiOM WITH ^lIGHTS A,JfC*u = *4F7.3/12H A

)

lTLRN FKG.1 HELH3U, ick =,I3)
(1U^ \ii\ii\JlM FKUh TkUc SCLUTiGN /t20.7)

(nbOL-,w,GG#NXDIM*NYOiM,NZJlM,lPPl* ir'P2# DELTA* NNX
APLi•M,iCdJRu»iNDG^;Li,CC>^iT*£PS#J>K,P,AP,iER)
i-1WYDIM*nZDIM*IPPj.*IPP2,NNX,NnY*NNZ,NIPDIM* ICGUkD
(NlPOiM), -tiT, Ilk
M,NZUlM)>»3b(NXDlM»NYUin,NZ0lM),JELTA(3,NlPL)IM)*CC
NIPDIK),P(MP01M),AP(NAPDIi1)

THIS PkJGRAM *-AS Lr.VELGPED 3Y DIANNE
THIS IS AN AUbuST, 197fc \/lkSiGN.

P G/LEARY AND QLOF wIULUND.

THIS Pi<GGKAn SGLViib THE JlRiCHLET PKGaLEM FOR THE
HELnHJLTZ £wUATIu^ GVcK 4 GEnE-<!AL liOUNDtC 3 UliENSIGNAL
REGION Ina-DuED IN A \j\i1 Cjat

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

3

3

B

3

3

8

B

3

B

B

9

3

B

B

219
220
221
222
223
224
ZZ"}

226
227
22e
229
230
231
232
233-

1

2

3

5

6

7

8

9

10
11
12
13
I'*
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

-W -W -W +CC*^=31 iNTHtRfcoiDN
XX YY u.

W » F UN THl tiOLMjAkr

WHEkE f ftNO Gl Avit GiVti'i FU'SCTiGKS GF x> i, anl) l> ANO UC iS

A RtAL CQNSTANT. THl cUuNOAkY IS AKblTRAKY, THt PkGGkAM
PROVIDES A SOLUTIuN Uh HL WtLL rNJwN SHCR TL t Y-»,ELllR
APPKDXi.MATIOiN 3F THr DIFFERENTIAL LQGATICN. THc dtSH iS UnIFUkM
IN tACM CajRDlNATl: DiStCriGN AND A Sli'IPLt StVEN PGIM FORMuLa
IS UStO FO^ iNTtKJQR hLii POl.^iTS. A CAPACITASJb riATKlx

METnQD* WITH DiSCRLTt QiPOKfSt IS UScO. Trie CAP AC I TANCh
MATRIX EQUATION IS FJkhJLATtU AS A LcAST SJUAfttS PKueLdn
ANi) SQLVEO bSl.NG THE CLOOt-ATrl tk AL'I _ N T . f ETh J J .

SEt PRLSKU-<GWSKI AND wIOLUND f^ATri. CLrtP.» JULY* l'>7o VGL iJ
PP.^-ifa-^bb^AN NYU-uuf. klPUkT AND f uK THC OM 'tfc PAPERS 3Y

0/LEARY ANJ wIDLUNJ*LSL RcPGkTS li Y Pk JSKUR'JwS Ki ANO
TwG PAPERS BY SHitM IN NUMcR .MA T h . * 197 1 * VGL . i! 9* P P . ic7-3£7 AND
TO APPEAR* f OK DtSCRiPliJNS Ot- SUCH riETHuO:..

THIS PROGRAM SHGUL^
IF IT IS TO 6t USfco

LENGTH ,SUCh AS IfcM

H:. wJN\/.-KT:t-

ON COMPUTERS
3 00/570.

Tl uauiiL- PKcCISiJN
wlTH SHGkT WOnU

(X* X-Hitl )

t

IN THIS DOJUME^tTAl i0.4» ^U RcKKi Tj NNX» Ni^Y* uR

AS APPROPRIATE* ANO SIhiLARLY h RlF-RS TO Hx* HY*
Trie 1ESH POINT (X*Y*Z) iS SAIQ TG HAVt 6 i^ElGHiiGRSi

(X+HX*Y*Z)* (X-riX*Y*Z)* (X*V+HT*i)*
(X*Y*Z+HZ)* ANL (X*Y*Z-riZ).

A MESH POINT I> CALLlu IRREGULAR IF iT

THl R£tION aNl) AT L^AST JNE GF IT:) SiX
GUTSIDL Tri_ oOUNDakY.

,^I^Z

OR ^i.

IS
Nt,

IN iHt INTcRIOk
IS On or

OF

ON INPUT .— MOUc = 1

2

3

IF MODE
NY0I1*
UNCHANGE
^ILL 6E
(S«a V.IL

TO IMPkO
USc fOD
ROUNDOFF
AP* AnO
RECOflPUT
RETURNED

IF

AN
IF

AN
IF
AN
IF
AN

IF

Gl
MA
iF

Gl
AN

NZu
D F

USE
L B

Vt
t = t

iS
p

cD;
ii

TH-. *

Gl =

THt R

Gl
THE K

D Gl =

THt k

Gl
THE F

= 0* ^

Y HAVL
TH- P

IS N

D/GR

IM* N

ROM TH
D AS T

•i US-,[;

THE AC
OR h

SUSPt
t ANt
IF Gl
THl S

lGION

t G 1 N

IS N

£ G 1 G i>

G

cGIJN
IS N

kObLt
NO TH
BEEN

RUiLE
CNZtR
MT
OR 6

N>*
. Pf<i.

HE IN
IF V

CU-AC
GDE=fc
CTcD*
UiE
IS IV

HAi 6l^N CHAN^lD F'<li^i

HAS brcN CHAWGtD FROM
JnZERu
iS THt SAMl Ai ON THc

iS

O^lZu

M IS
w ON
CHA

1 iS
J* A

MAY
Ol

N.mY*

V IGU
iTiA
OJc"
Y OF

IF

Rl.I

MOO
OHZE
TiNL

THE Sa

THt S

LY Cha
IN G t D

THc S

NO TH..

HAVt b

LTa>
NNZ*

s Call
L GULS
i OK C

A PKL
kOuNu

iMITlAL

£ " 3

RG* AD

Ml aS on THt

M.lt

Afli

ONL
LcN
iCuu

IP

. T

s i-u

.

)

viOu
OFF
IZt

TG F

i) GG

AS C-N TH
i S 1 H A T

<«S CN TH
Y CHANG t

CHANvjED
Ru* INC
Pi.* AND
Ht CGRRl
R THu Di

SLY C4LC
IS Nor J

Thc 60UN
OkCE THl
TO THE

Irit PpiLViOuS v,aLL

rn; PR'^ViOUS CALL

PklVIGGS CALL

PREViuUS Call

E PREVIOUS Call*
;Pi AND/ OR MT

c PRcViOUS call*
iS THAT LPS

Ji\D* NXOlM*
1PP£ MUST BE

NT VAlUc of S

POLt STRENGTHS,

UuAlEu SGLUTiJ.N*
ujP;;CIlD. if
DAKY VALUiS ->.,\ R*

<! SI DUAL TG dt

.>ULUT J UN

— W(NXDIM* NYDIM* NZDIM) iS UN I No. T i AL I Z c E .— GbCNXDlM* NYDIM* N Z o I r, ) i N i T 1 A L 1 Z (. D TO G1*h2»HZ IN THt

9
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

L

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

RuGI'JN» WITH ARBITRARY »/ALUti OUTblOe.
FOR 1*1* . ..*NN)i> J«i*...#NNY* ANU K»1,,.,*NNZ>
l36(I*J*K) CQtiktSPONOS TQ Gi (( 1-1 ) *mX* ( J-1 ) *riY# ( K-1 ) ^HZ ) *rtZ**Z

,

IF hOOc « 1* J GR b» Gl MAY Bt A DUMMY ARRAY (I.E.*
IT NEED ^QJ -it: LJMbNbiJNtu) BY THE CALLING PkJGkAM).

IPPi IS ThE NUMBc»* OF iKRtGULAk PUINTS ^ITH AT LcAiT 1

IMcWiOR NEIC-H83K a^ tACH UlRECTIUN X, t , AND Z.

iPPa 15 TH^ NUMSrR OF IR-^lGULAF POINTS WHICH* ALONG
AT LEAST CNt DIl-cCTiON* HAVt TwJ EXT£-(10R NEIGHBORS.

iPPj. + IPP^.cO.O>
wHULL CJbE WITH

THS
THE

IN THt EXCcPTIGNAL CASl wHEN
WILL SOLVE Tnt PRlsLcM 2^ ThL
bOUNDAkY CJNJITIONS;

G1(X,Y*Z) = C Z .LF. v. Ok Z . v, T . i

.(0»Y*Z) ' W(1*Y*Z) AND W(X*U*Z) » V.{X>1*Z)
»k{X*t'*0)=0 /Ml W(X*Y*Z) aOL'NDEb FJk ALL Z.

ARRAY GG MUST H l iNlTl^LIZtD TG Gi*HZ*HZ AiND MODE

kOUTINE

IN
MAY
THc

SE A DUM»iY
ARRAY Gb
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THc CJ.SJUbATt oKAlIcNT ITui<ATiON,
, INPJT JATA FUk CG^k!;CT^;iiJ.
OlPOLc jFRcinGTHS In A >iiPjltt ARRAY TO
E OiPuLiiS IN A 3 DIMcNSIDnAC array.
•JUTlNd THUS DtFINtS A lINlAR MAPPING
AC-j jF 1-D1.«lh5I0NAl arrays TO A SPACE
i.NSiJNtAL ARRAYS.
Hl IkaN^PuSl of TnE /IAPPLmG DEFINED
•

ifiENjIuNAL AkkAYS INTO 1-D I ME NS 1 ONA L

uSiNu A FIMTl 01»-FEk:NCL FORMULA WHiCH
OS TJ A PART Ql- THE Shu^Tl t: Y-Wc Lie R

TiON. THE i-LNAiNING PART IS HANDLED BY

i TH: TRA.MjPOic. OF THE MAPPING DEFINED BY

Sr. i. THr. jI-KHlET DATA ANu THc VALUES OF bi
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THt Ki.j-iT HAtb SIDE OF THE CAPACHANCE EQUATION
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R-IO-PlITZ ALoUklTHrt.
AST raL'<i.-K TKANSFukri KOLTlNi; DUE TO
KLkOWSKi who MVISlD a CCO'. wRiTTtN BY J. COOLLY.
UStU bY iUsRUUTlNE CUdE.
UfcRCUTiMc C^iLLED t>Y RFJkT.

LOCAL STORAGE

CuMMuN /SPACt/ HX,HY,HZ»HZ(3)»HX2;,hY2*hZ^»TwJPi»CQNST»C#CHZZ*NX>NY
i*NZ*lPl#lP^*lP*LJb2^X,L0G^NY/a^So/CY:>U
DOUbLc PkECISIJN OATaN
DiMLN:>IJN D(3)f IJk(3), 10RD(3,b)
LOGICAL bS
DATA IGRD(1»1)/1/
DATA iaRD(2»i)/2/
DATA iaRD(3#i)/3/
DATA I0RD(i>2)/2/
04TA iORC (2*2)/3/
DATA I0RC(3*2)/1/
DATA iORD{l»3)/3/
UaTa iORD(2*3)/l/
DATA iORD(3»3)/2/
DATA IORD(i/H)/l/
DATA X0R0(2*4)/3/
DATA iaR0(3»'t)/2/

B
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IF (MUDE.bT.D) IEi< = l

(MDUi.lT.D it:^=l

(iLR.N--.0) RcTUSN
(MuOc.GT.^) GJ Tu

^1u >t>fcPS»i\lT

i70
t.3).4-^i;.(IP.^T.O)) GO TU 130
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L = l, IP
k(L )-AP (L

)

NU =

lO
G L =

+ R(L
>v{L)

uOt .Lh.2) S(L)«u.t.O
NUE
= sa
(6,

N DKM
(o,
Kl

a»lP
)*k(L )

T ( R K )

300) kNU
l*XlPi.NV.
2t;u)

T«1#MT

Lt .LPS) G J TJ 230

CALCULATE RESIOuAL iKCWtMcNT

CALL
CALL
CALL
Call
CALL
CALL

iD)

vriJLT {P>w^NXjIi1>KTuiM*iMZuif^NiPDAf1»iOK)>iNJOKO/l)i:LTA*ICuJi<b)
CU^ifc { rt*fsXDiM»NYDi,'<1*NZLli,1*NAPDi,1*AP)
UTAMLT (W>AP/NXuin»NYaiM?NZLlh,NIPJIf1,atLTA*ICaaK0)
oTAT-^N (Ap,«,^XoI,':, rfjl,1,NZLiM/.NiP0irt^0ELTA>IC0QK0)
Cj3t (WfN<Dlrt*NrDin>NZLli1fiMAPDiM*AP)
VTt^ANS (»^*AF>N>^i:^>NYJli>iNZLir'i/NiP0lr1, iJMJ/iNDQKi;*0eLTA,lCi3Uk

C

C

c

190

CALCULATE STEP Lt.iGTrt

PAP»O.EO
DO 19u L^'l* I?
i^AP = PAP + P(L )*AP(L )

ALPHA";^i</PAP

367
38d
389
390
391
392
393
394

B 395
B 396
d 397
B 39d
3 399
B 400
B 401

402
403
4C4
4(5
406
407
408
409
410
411

B 412
B 413
B 414
3 415
B 416
B 417
B 418
a 419
B 420
8 421
B 422

423
424
42i
426
427
428
429
430
431

B 432
3 433

434
435
436
437
43d
439
440
441
442
443

8 444
B 445
B 446
B 447
3 44B
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CALCUL;iTE \l^ ITfcRflT: a-o -^-^oIDU/iL AND RljIUuXL NQKM.

RKQLU = «>^

RR-O.tO
on 2 JO L«l» IP
S(L ) »S(L )+Al.?hA*H (L )

K(L) =K( L)-ALPH-»A P(L)
Rr<"RK + R(L)*R(L)

20U CONTINUE
BcTA»kR/»<Rl)L J

T L R "I i N A T I ,F iNSUt-^ SUhr xC IcnTlY aCCOnATc.

RNDRM-SOkKRR )

wklTt {b»260) KiT> AlPHAf cLTA/KNGRr.
IF (RiNORM*<IPINV.LT.cPS) bJ TO Z30

CALCULATc NLw bTLP L)I^=CTID^.

00 £iC L«1»IP
210 PCL )=K(L)+d£rA»P( L)

220 CONTlNUG
1 L ^' = 3

231. CONTIlNUf

CALCULATE FINAL ANjWcR

CALL V^IULT { S f ^ f hXO ] "^ , r> i ^ i A f islo if' f ^ iPLilf1»lLK0>iNJCKL;*DtLTA>Kuut<L)
CALL CUBt ( W^NXOiMfNrJIf.M^^Ji.^^NfcPL IM*AP)
IF (.NOT. 36) KtTUKN
OU ^'fU K = 1»NZ
00 2^0 J=l»Ny
00 2'»C i = l,NX

2<»G W(I* J»K)-W( I» J*K) iLbC W J*K)
HETURN

250
]

260
270

]

260

29u

300
310

FOPrl

ALPH
FDFM
rORfl

MUM
FORM
8EGU
RUIN
(IP

FORM
* NY
IM =

FORM
FORM
TH-
.8*2
EiND

5U6k
P:KM
COMM
»nZ*
Dirlfc

lOK

AT (

A , J

AT (

AT (

NUM i

AT (

LaR
ATE
P2)
AT (

DIM»
#1

Al (

AT (

X 01
2h I

3H
X,5H
IiO>
2bH0
i R

6rl N

POIN
UlRc
= ,1

AND
7*12
20H
^IH
R L C T

N TH

CDNJU
iuTA
2 tic.
H c L h 3

F CON
NX «

Tb wl
CTIOiN

7)

THE T

NZOl
Ht N

iMTI
THtr r^

t Z L)

OuTINt HlLMCK
*NAPbI1>ltR)
UN /SPAC^/ HX
IPl*lP2>IP*Li'
NSIJ^ W(NX0i'"
D{i,b), IKDOR

GaTE GkAJicnT iTtrATluN / / aX * i jrti T La ATI uN »2A»ori
> 7X*l<tHk jSIJUAL ImOKM )

3»7X,L1C .3)
CALLcD ^ITH MlLu = *ii>/DH tPi «»i.iU.S/&7H MAaI

J u G A T t C < 4 i . iN T j T t K A T 1 u N S ( N i T ) = > J 7 )

*i7>'jh N^Nlf « jiT^SH NNZ - ji/Z^-^ri NUMtJLK UF IR
TH AT .^Lof i »!: 7Ht XTlRI Jk ^EibHbJR ALONG A.mY CUJ
(iPPl) =»I7/'i3fi NuilbuR Or JlHiK IkrvtbULAR PuiMS

riPlL bI^'E"lSi JNmL AkRaY MAS JiMt-i-iSlONS *27H NXOif.
M » »317/t3H THE u'THnt- AKRAfS i A v t OiiiENSiJN i>(iPO

APrii= ,i7)
AL Kt:>iCuAL = »LX*t^o.5)
iSh SPAClNGS ».c^t vALCULATt:) TO Dc *r2u.»*2iH IN

f /'iiXtf-^j,: fZb-i IN Th. r DiRf-CTxON* AND >/AiX»Ftv>
IkF C Tl UN . )

(^^l-l". LTAflCJORG*lGRu^lNOuKJ»iNXjIM>NTOIn>NZJi«>Ni

»HY>HZ*rl^{3)»HX^*HY2*nZi*TwJFi»CUNST>C»CHZZfNX/NY
G2f-X*L0G2Nr/ JXS->uYSj
»iNYDlM»NZDlri)* DL-L rA(3*MP0ifi)* iC U jK U ( 3* N i Pu i M ) ,

U (M P U i C

J

451
«»t;2

^5o
'i^J

41/6

^59
^tO
^tl
'ibd

463
Ab4

460
46 7

46b
469
470
471
472
473
474
47p
473
477
475
479
4F0
4t:'l

4t2
'ft J

«»r'«

4e:>

4fcb

4F7
4en
4b9
4<*0

49i
4t;2

4^3
494
49:j

49o
4S7
49a
499
5C:J

rci

i-L3

5 04-

i

2

3

: 4

C 3

C c
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iJIMirNSION IN.; i(3)»
DIMENSIlIN ICO)
LuGlCfiL iN

nr P (3)

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

1.

3.

5.

N 1 P 1 M , t : .

N i P D I ^ . C t

.

N X 1/ 1 M . G b .

iMDICiS GF

250 ANb 4Kt POWckS of 2

THIS SUBSQUTlNt CHt.CKS THAT;
: ANJ .Ll

, lPl*-2*IP<i*
I MAX (XPi+i:*iPZ* NX*NZ» NY»N2 )

NA* UUii .Ot. NY* NZOIM .06. NZ
1P>;-.0LAK PUINTS A^E wITHI'N RANOt

aiKtCTluN Tj cJUiMiJAKY H«0/^ tACH KktGULAk POINT
POINTS OUTSIDl THl RluION
THt LIST IF iKkeoULAK POINT:> IS C'JMPLtTE.6.

P <: K T I

iF {NX,LT.->) K««i
IF (NY.LT.a) ltK=l
IF ( ^**LDG2NX.Nc.NX) i c li = i

IF (Z»*LLG2NY.iNlc.NY) Uxsi
IF (NNX.GT.2:;t) Iik«;
IF (NNY.GT.2it) IEP=i

PART I

N0i«iPi«-t*IP2
IF (NiPDlfl.LT.NL.1 ) lcK = l

IF (NAPJiM.L T.MAX0(r-.ui» NX* mz» ^4r^z ) )

PAkT 3

IF (NXOL^.LT.NX) l!:l'=l

IF (iVYDlM.LT.NY) ict< = i

IF (NZOir.LT.NZ) Xth"!
IF (IcR.lU.I) go Tu 1^0

PAKT ^ ANIJ PAPT b

•it i£T w = IF Trli-

Jk JN
1 IF T-i.

2 IF THt
TO CHECK THc REGION

1 INITIALIZE ALL W/
2 :HtCK tftCH ixt-GU

ALREADY i3crN S-T
IF IT IS v^t

IF IT iS 1 wE
SET Tri- W OF THE
W/S TO U Jw 2*0tF
THt VALG^ AT A Nt
IT IS ALREADY Q,
CONSISTENCY. 1/S

3 NGk REPLACi: THi. w

RJw OF PUINTS IN
Wc MARCH ACPuSS*
THEN W': MARCH ACR
A Of AT WHICH POI
COMINUlS JnTIL c

2.

I:-R= 1

POINT IS
The buUNUA
POINT iS

PJiNT IS

QuTSiOe THt REGION
t<Y

AN IKkZGULA'^ POINT
iNSIDc THt .^EGiON.

HAS
5 \:i 3.
LaR PJitT (1 TO IP). IF ITS
TO J OR 1 W. HAVc AN tRRJR
hk>tc RECtivEu Conflicting OcLTas.
HA\/c TrtO SETS Oi- DATA FOR Trie iAft POiNT.
BOJNDaRY POINT TO 1 AND THE SIX NtlGHSOK
cr.JiNG ON THt VALUE OF THr. DELTAS.
1GH30K IS CHANGtD ONLY IF IT IS A 3. IF

I, OR 2* The VALUE IS CHECKED FOR
AkE CJNSiSTENT »«iTH 2/S.

/S WHICH REMAIN EQUAL TO 3. EACH NE»;

The CUiJc bEGlNS OUTSiJt THt RcGiON.
KtPLACING i/S bY 0/S UNTIL WE HIT A 1 OR 2.
OSS RlPLaCING 3/S tJY 2/S uNTIL Wt ENCOUNTER
NT -^E ARE UUTSIU6 AGAIN. THE PROLEUURE
VcRY POINT HAS tjEtN ScT TO A VALUE 0# i» OR

c
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4 CHt.CK That OIPOLtS HJlNT JUT OF
b FINALLY* CStCK TnAl HQ INTlKIGk

NcIGHBJR* I.L.f NG J HAS A c ; S

HJInT ^AS AN ixTr. kIur

10

IF ALL DF FHtih Tui>13

DO IC K=1,NZ
DO 10 J"1»NY
DO 10 I=1*NX
W( 1* J*K)»3,bO
NX1=NX-1
NYl-NY-1
NZ1=NZ-1
DELTMN=1.£0

StT tl NtA« BDUNljArY,

At. PAibtU* Trl; :^::GI.)N IS OK..

lKT=1. IP

L = J P1+ ( L-JPi) *iL-i

OU 100
L=LKT
IF (L.GT.iPl)
DO 20 KK»l»3
IC(KR)»IC03kO{KK,LKT )

ISTtP(KK)=l
IF ( A3S(CtlTA(KK, L) ) .LT,L.;LT"'i.>t) U t L T Mn= AdS { J- L T A ( KK , L ) )

20 IF (DlLTA(KK,L) .LT.L ._a) 1 S T . P ( K,K ) -^-i

IF ( (1C(1).LT.2). Jh'.(iC(i).Gl .NXi)) o'.i Tu 7J

IF ( ( iC(^) .LT.2).Ui<. ( IC (2).GT.NY1) ) bu fO 7J

IF ( ( 1C(3).LT.2).3P. ( IC( 3) .oT.inZ: ) ) hO TO 70
ISUBl=IC( 1)

lSUB2=IC(a)
ISUB3«IC(3)
IF ((w(ISU'31#iSU52*iSUJ3).<t.3.tC).ANLi.(w(iiJDx#iiUt>2»ibua3).N;:.£:.

lEO) ) GO TO 80
W(I$UB1»1SU32,1SUB3)=1.LC
DO 60 KK, = 1*3
lN':I(l)-iC(l)
lNtI(2)=IC(2)
INEI(3)-IC(3)
IF {A3S(C'£LTA(KK,L) ) .Gl .i.tU) GJ TC ^v
IF (L.Lc.IPl) GO TO 30
IF ( ABS(DtLTA(KK,L+l) ).GT.i.tO) Lu TO 30

TWO EXTcRIOF NL IGHBOkS LM KK-TH DiKELTiON

lNtI{KK)=lC(KK)+ISTtP(KK)
ISUBl-I^Ji: 1(1)
ISUB2=lNei{2)
ISUB3»INL1C3)
IF ((•y(ISU31*iSUB2,iSU,^3).-U.l.d(.).Ck.(w(lSU3i*liU32*iSUo3).tJ.2.t

10)) GO TO 50
W(ISLBl#lSUB2*ISUB3)=0.t(.
INtI{KK)«lC(K,K)-iSTtP(KK)
ISUH1=INE1(1)
ISUB2"INt 1(2)
ISUB3«INEI(3)
IF ((»i(Ii,Udl*ISUB2*IjLB3).cJ.i.t0).UR.(W(iSo31>ISUB2flSUB3).tJ.2.t

10) ) GO TO 50
W(ISUB1»1SUB2,ISUB3)-C.E0
GO TO 60

ONE DtLTA .Lt. 1 QHi cXTcr^IUK ANO UNt InTtKlJK NtibHBOK

70
7i
72
73
?<
75
76
77
7-i

7v
60
81
6 2

e3

to
fc7

bo

90
91
<.2

93
9^
93
96
9 7

93
9s>

100
101
iC2
iOi
104
1C5
106
107
ICB
109
110
111
112
113
114
115
116
117
lib
119
120
121
122
123
124
125
126
127
126
12'^

130
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30
1SU61

ISUB3
IF {(

i ) ) G

*(ISU
INcI (

ISUbl
ISUR2
1SUB3
If (w
If (m
GG TO

KK)
-IM
= IN
»I.M

m(X
U T

»1»
KK)
= 1'^

-IN
= IN
(IS
(IS
•SO

= iC(K,K )+lS rt P (KK )

L I ( 1

)

tl(^)
cl(3)
SU!^l^lSU'i2>iSUa3)..i.l.cL'),OR.(W(ISU31*li)U82*iSUB3).cu.^.c:
D IJO

1SU82*
'=IC(KK
ti(l)
t I ( 2 )

tl(3)
l.6if lbs

I S U 8 3 ) = C . 1

)-l STt P(KK)

,05ZflfoB3),lJ,<J,iO) GG TJ 50
;u&^*iSL63).;0.3.cD) W(XSU3i*ISdB2>lSUd3)='2.E0

3DTrt NtIGr(3CRS iNTtRlQi-

4& iNiII (KK) =IC (KK )+lSTt P(KK)
ISUBi=INtI(l)
iSUb2=lNcl(2)
ISUe3-lNt 1(3)
IF ( w(ISL3i> ISU32> iSU33 ).c J.u.lO) Gl) Tu 50
U ( W( ISLB1» liU62* ISub3) .c J.3.£i) w (

i

ibBl» 1 iJB 2» ISUB 3 ) = 2. EG
iNcI (KK) =IC(KK )-i:>Tt P(^K)
lSUhl=iMfcl(l)
1SUB2«IM! 1(2)
I5UB3=INcI(3)
IF (w (iSUBl»i jUd2»IiUd3) .L J.O.lO) GO TO 50
IF (w(iSUdl*ISUii2*lSU33).!:J.3.!:0) W(iSuai,iSOb<i*iSU3 3)=>2.eO
GO TJ SO

5.) WRIT-: (t)»220) IN: l(i)»iNi. i (2)» iNt 1( 3),L» lC(i) WC(2)» IC( 3)

lcR"2
6U CQNTlNUt

GO TD IJC
70 wKITE: ("5*200) L*IC(1 )»lC(>:)*iC(3)

bO TO 9

J

bi; ikITl (t)*210) L* i >- ( I ) > 1 C ( 2 ) * l o ( 3 )

90 Ic.R = 2

iVo CGNTIMJE
JF (ic^.Nc.O) ^tTu-^N

SLT Hh JTriL'^ VALGiS OF ^

DO 120 K«1»NZ
DO 120 J = 1>"^T

IN=,FALSt .

DO 12C I»1*NX
IF (IN) h\j TJ 11^

OUTblOh PtoION

IF ( ( ky( I» J,K) ,tQ, l.tC.) .Or . («(I* J*K) .lO.2. t-G) ) IN«.TS!U:,
IF (w(I»J»K),Ly.3.=C) w(i>J»K)"j.LC
G'J TU 12C

lUii ij'z RiGiU.s

11.) IF (*<(I»J»K),i;a,t',!, r-) lN»,F4LSt.
IF (*( I» J»K) .t J.3.L1; ) *(l*d»K)=2.H

12U CONTlNOc

OIPOL- CHtCK

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

w

c

c

c

131
132
133
13<»

133
136
137
138
13^?

I'tO

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Iti
162
163
164
165
166
167
Iti
16V
170
171
172
173
174
175
17o
177
170
179
leo
181
lb2
183
164
lb3
If D

lfa7

1B8
1B9
190
191
192
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130

1<»0

150

DO 150 L»1»IP
INDEXU-L
IF (L.GT.lPl) INDcXD^IPl* ( L-IPi)*Z-i
DO 130 KK'-l^a
IC(KK)«ICOO'<U(KK* L)

ISTEP(KK)*1
If- (bt:LTA(KK, INDr.XO) .LT.1-. j) I :> f l P ( KK ) =-^
lSUb«iNJCRO(L)
li = IOKL)(i*ISUB)
I2-iakD(?»ISUc)
I3=«iJKD(3*iSue)
IC(Il)=iC(Il)+IiT.P(ii)
ISUB1=IC(1)
ISUBi;"IC(2)
lSbB3=IC(3)
IF (wdSLBl* IiUBZ,ii,L;33) .bf.i.rO) CO TJ l-Vi

IC(I2)=iC( I2)+iST-P(i2J
ISUbi=IC(I)
1SUB2«IC(2)
lSUbJ=IC(3)
IF (wdSLBlfii 06 2*1^053). 1.1.1. to)
IC(I3)«lC(I3»+ISTLp(i3J
ISUfal«IC(l)
ISUb^«IC(2)
ISUB3=IC (3)
IF («(iSL3ifii,oa2»ibjej).or.i.fj)
GO TO 15C
wRITh (')»23<.) L*IC01,xj(l*L)^ivUUKL(2/L)»ICCj'<D(i»L)» (jiLTA(KK»iiNi,-

iX0)#KK«l,3)
lfct^x2

CONTINUE

C 'J T u 1 1

Ou Tj i-t^

PAkT 6

ISIZE
00 17
DO 17
00 17
IF (w
ISIZL
IF («

IF (»,

IF
IF

IF
IF

GO

(W

(w

(w

(w
TO

160

170

WKlTc
ll-]» J

ItR«2
CONTI
•» X I T t:

KcTOR

-IPl
I«
J*

U K =

(I> J

"151
( If o

(I» J

(if J

( I» J

(I-l
( I + l

17

1

(Of

+ IP2
IfNX
l*Nf
If NZ
*K) .N-.2.L0)
ZE + 1

f K-1

)

.eo.o..o)
fK*l).E;!.t.LO)
-If K) .tt .C.cO)
+ X f K ) . ft. w . .- )

fJfK,),cC.O.E0)
f Jf <) .EQ.o.iO)

GO TJ 17v

Lj
bJ
GO
o "J

t u'

rj
TO
Tu
To
Tu
Tu

loO
IOC:

loO

ifJf<.frt(Jfv)fK,-^)>w(ifJfK+i)f*{lfJ-i.,K)f*»(lfJ + i,K)fft(
«( 1+lf Jf K )

2^0)

(Of l-)c)

N

IbO WRITE (6f250)
i^RITE {bfZbO)
«ETOKN

iSiZcfoiiLTr^<

r»Xf .• Y>^Zf > iP Ji^-if ivAHL iMf IPf „XiJ i 1f .Nf JIflf NZO m

c

c

c

c

c

c

<•

c

c

^.

r

c

c

c

c

c

c

c

c

c

c

c

c

c

^

c

c

c

c
r

c

c

c
r

€
C

c

c

w

c

c

c

1<*3

l.«i^

19:>

i9b
197
196
19-^

200
2Ci
202
2C3
20^
2 Co
2f

207
2 0-.

2C-J

2lJ
211
212
213
2lH
215
21o
217
21-^

21-^

Zlj
111
ZZl
lc6
ZZ'i

225
ZZb
zn
22o
Zc^
Z'yO

231
232
233
23t
23p
2 3 6

237
23?
23V
2Ao
2^.1

2^12

2<»b

2^1
2't5

2AC.

2A/
2^c
24-J

25j
2Si
2!^2

253
25^
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190

200
i

21C

220

230

2'»0

2 50

2bO

FOKhdT
* I 2 (> •

FQi<MAT
E -OUT
F JKMaT
fioH i

Ki Ok K

*3It3)
FORMAT
M Trit

ATIDN
FU«hAT
U M - hi T A

FORMAT
3t L

C IF
ks in
FORMAT
M= ,17
H H hlO
FORMAT

NNX
X , 4 '^ .i

NXDl
END
SUBkOU
COOFU)
COMhO^
>NZ/ IP

ulMtNS
(3, MP
1 M t N b

NUMBER UF POINTS IN FLClUN ^ ,l3/19H SMALLtST DtLTA =

IRREGULAR POINT ,I7>30H AK

(3CH
7)
(i,5^ *«£><^Qf««* CJOkJINATlS of

OF RANGt. CuURDlNAFuS APt *318J''- '"-•-' ^ ^ .^
-'

^

ibOri »**t<ROR*** CJNFLiCTiNvi BOUNOAKY INFORhATION. */13X
RRtGuLAR POi.NT ,lcW5h IS LliTLG T>*IC:: uR LISTlD AS AN cXTc
citn.-iUR UF SOHl i ;> - oUL AR Fui NT. / 1 3X» 2ih TiL CUURuiNATtS ARt

PulN
RiLiR

FOR I

TICN
Jib

ISTriD
UTSIO
Y UIR
(19H

, 9h N

If1= ,

( /I'i

^H^ N

M .Gl

***£k
T ».lTh

POINT.
RRlGUL
***ER

FOR tX
»31b/i

+ *i:R

AS IR

i, i i

tCTlON

APL,IM =

17)
X,3 MN
fMY .Lc
N 6 P U II';

. N .S X ,

ROF**
CLUR
Wl

A«\ RO
ROh**
PLANA
3X,7m
RUK »*

RcbUL
F IRR
>2t-'»

ROF **

,17,

C

OIK A

3X,6
iNT

J

TIQN
JLL

* T

A* ./

tC.LL

.0,2
* ,1

/IX,

t I D NNX,
. 2!>o., /i

N Y C IH .J

JNFLICTING BOUNDARY INFURKaTI
Fti ,3iF,'t6ri iS iOTH AN bXT
qH tRRCR D,.TuCTcC *<HtN PROCtS

,i7,19H Win CGORDlNATdS ,

iPOLF KtSTKlCTION VIGLATtQ. ,

. /i3x,2Crt Ik REGULAR PjlNT
Ta , 3tiC. 3)

M POINT wiTh COORJINATtS ,31
i2X,27H NclbrldORS liM Z Uit^tC
aR, 2 IF INSiOt ), 2F'..u, /i3X,2
7rl, NiilGrlbJRS iN X DIRdCTIuN
iX= ,)7,6ri NNY= ,l7,bH NNZ» ,

jH IPP= ,i7,cH NXJIM= ,I7,t}ri

NNY ,\3L. c AND PCW;RS OF 2. ,7
^X,3Url (xIPOlfl .Gc. IPPi +

i+<l*iPP2, NX».-^Z, AN|D NY+NZ.,/
:;. NNY, AihO NZDIM .Gt. NNZ.J

0N.,/i2X,3Ci
ERIUR AND A

SING INFORM
316)
3brl Slc dog
, I7,i'tH CO

d,3iH SHOUL
TiON ,'i'tH (

7ri, NcIGHciO
,2F^.u)
l7,Vr| NiPUI
NYOIM- ,17,
;.... i ^ -

13X,27H
2*IPP2.,/i3
13X,37ri

TIM, vr,ULT (Y,«,NXLi.1,NYDIM,NZDIl'1,NlpL)iM,lJkiJ,lNDaRD,0tLTA,i

/SPAC.-/ Hx,HY,HZ,ri2{3),rix2,hY2,HZ2,T*(JPI,C(jNiT,C,CriZZ,NX,NY
i.lP2,.P,LLla2NX,L0G2<NY,JXSw,UYSiJ
ION W(NXulM,NY,^iM,NZJIrt), Y(MPUIM), J ;L T A ( 3, N I PO IM ) , icOQRiJ

OU), iNOORD(MPuIh)
ION iC(3), iSl!iP(3), iOKU(3,b)

10

THIS SUbKOOTlNE CQfPOTtS w = V Y

SrTTir«<C W TL a^D Tmln ScTTLmG UP Tnc

UO 10 K«1,MZ
DO 10 J=1,NY
DO 10 i=l,NX
W(I, J,K) -0,tO
UO 30 LKT»1, IP
INDFXU^-LkT
IF (LKT.&r.IPl)

DiPJLcS.

IN0t<Li=iPi*(Li<>T-lPl)*2-i

FOR EACH Ir^^fcGULAR POINT,
OBT&IN COQkCINAT'S OF iKRtoJLAR
PUT T;HL DIPULE IN PLACt.

POINT.

20

ISUB =

il'lO
12-10
13=10
DO 20
1C(KK
ISTTP
IF (D
RAT12
RAT13
W T = Y (

ISUbl

INDO
kD( 1

kO(2
R0(3
KK =

)=IL
(KK)
ELTA
= ABS
= A3S
LKT)
»1C(

RD(
,1S
,1S
,IS
1,3
00k
«1

(KK
( (H

( (H

1)

LKT)
Oo)
Ufa)

OP)

i/(kK, LKT )

,iNDtXL).LT,O.c:0) i5TtP(KK)=-l
2(Il)*0fcLTA{ll,IN0LXD))/(ri2(i2)*0eLTA(I2,iNDtXU)))
2( ll)*Di LTA( li, IND L XT) ) /(H2( i3)*0ELTA(13,iN0EXD) )

)

C

c

c

c

c
r

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

25d
2So
257
253
259
260
2fcl

262
263
264
265
266
267
268
£69
270
271
272
273
27-^

275
276
277
27o
279
260
261-

1

2

3

5

6

7

d

9

ID
11
12
13
Ik
15
16
17
10
19
20
21
22
23
Z'i

25
26
27
2a
29
30
31
32
33
34
35
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30

liUb
I SUB
w(]S
IC(1
ISUB
ISUb
ISUHl

W( IS
ICd
iSUB
ISU*^

ISUB

IC( I

iSUr^

ISUB
ISUb
t^dS
CONT
-^LTU

END
SU8R

IICOO
CJMM

1>N2»
DIME

1(3»N
DIME;

2»IC(2)
3=10 (3)
U-il, iSUnZ, ISU
1)-IC(U) + 1ST
l-IC(l)
2=IC(2)
3=:C(3)
utji* isua2* ISU
2)«IC(I2)+IST
i=IC(l)
2=10(2)
3-IC(3)
Utsl* lSU62*ISu
Sj^iCdSj+IST
1 = I : (1

)

2-IC(2)
3«IC(3)
UBi»isua2*isua3) = *(i6Uii,isubi;^iiUb3)-*r*kAri3
iNUc
RN

iy3) = w'(iSijjl/iSUD2»iStJoi)+*T
Pdl)

33)«W(ISU}i*ISUci<i»lSUt53)-*T*(x.;0-KAU2)
EP( 12)

ci3) = ».djJ-4i*i::iJ.2»lSU'^3)-rtT*(.<ATx<:-KATi3)
EPd3)

kO)
ON /SPACc/ MX
1P1*IP2» iP*LQ
NSrON W(NXOIr'i

IPOlM), It.ObH

NSIQN IC(3)*

*HY/HZ>H2(3)>HX2*nYi:,MZ<::*TrtJ»-i*v.ur,iT>C>CriZZ>iNA>Nr
G2NX,L0t2Nr,jXSCj,(JYSQ
»NYLlM,NZJIrt)* Y(MPDii)* D; L T A ( 3# N i PD X rt ) * iuuGkiJ
D(MPbiC)> iJkD(3*o)
I S T t P ( 3 )

10

TH
US
Wfc

00 2

INDE
IF (

ISUB
11 = 1

12-i
I3«I
DO 1

IC(K
ISTf-

IF (

RATI
RATI
ISUB
ISUb
ISUB
WT = W

ICd
ISUB
ISUB
ISUB
SUM =

ICd
ISUB
iSUB
iSUB
SUM-
ICd

IS SLBkGUTiN-
IN5 L'NOIvIDtCi
HjHTS.

CLjHPUTlS Y • V w.
DlrftfLNUt i-iJ'<MUL*iS LcfEK.'iiNtO cY ThE JlPuLt

LKT
XD-LK
LKT.b
= 1N0U
OKOd
QK0(2
QkD{3

KK*
K)«IC
P(KK)
DtLTA
2 = A3S
3«A35
1 = IC(
2-IC(
3 = IC(
( iSUB
1) = IC

i-IC(
2«IC{
3=IC(
(RATI
2)-IC
i = IC(
2=IC(
3 = 1C(
SUM+(
3)»IC

= ldP
T

T.IPl) i

RO(LKT)
»lSUtj)
»isue )

*ISUb)
1»3
oaKU( KK,
• 1

(KK>I^uE
( (H2dl)
( (H2dl)
1)

2)

3)

1*ISUB2*
dl)+iST
1)

2)
3)

2-l.E0)»
d2)*IST
1)
2)

3)

RAT13-RA
(I3)>IST

NUtXD=Ux-»-(L'^r-iPi)*2-l

LKT)

xD).lT.L,J) !:>TLP^^^)=-l
*JELTAdi»iiNL)cXD))/(H2d2)»0tLTAd2^iNDtXD)))
DtLTAdi»lNDtXu))/(ric(i3)*JLLT4d3*i.N!i;'sX0)))

ISUB3)
EPdl)

*(( ISUSi^ iSUB2* ISUb3 )

LPd2)

Ti2)*wdSUBi>ISuB2*ISUB3)
EPd3)

D
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I3U&1«IC(1)
1 SUf>2 = iC(2)
ISU63-IC(3)

20 COMiNUE
k : T U K N

Sbt^KDuTINt UTa.'UT (^.»r>NXji.-1*NrC;i. f.*NZDii1»NiP0lM»D£LTA,ICJ0RD)
COilMUN /SPACc/ H<>HYfriZ*M:d(3)*HX2*H1f2fHZ2»T4JHl»CUNST»C*CHZ^>NX*NY

If NZ* iPi» jP2»iP*LJG2r-,A*LGG^.-,y,QxbQ> arsu
JlMt'NSiaN ^(NXDl«>NYJIf1*t\Zjii1)* Ul LTA(3»NlPL)ih)* 1 C aOk D ( 3* N i P U i M ) *

1 Y(MPDlM)f DH i) t D2(3)

T

THii SU'ii^OJliN; CLiIPUTLj Y = U A -,

wHl«- 7h£ lATRiX KJWS rJKi rnc ShUKTLc Y-n cLL £« AP PR JX IM AT IDN
•JF -LAP+CC JSlNG DATA U.mLY AT Tnt iKRrGbLAK PJINT AND ITS
IhTi^ICjK '^tc iG'H3Q^ii!. Tri£ hJuATli;N:j
ARc SCtLiO i>u THAT Th; 1-MiN DXAblNAL cLc^c^l Jt- TH^ MAIKIX
(l.fc.f THt CJeFflCLcNT FJK Trifc it^.P^GULAK P31NT ITbtLF) IS i.

uJ lii- LKT=i»iP
L-LKT

b<.T C JLi^ Ji.MATtj ANu L)lil4NC::S FOi- THIS IKkJGuLAR PGiNT.

I=ICuJ<J(1*l)
J«iCLiu'«-j(2*L)
K = IC>jjP0(3*L )

IF (L.GT.IPi) L=IPi*lL-IP L) *^-l
ir.Cl = i

INC2»1
rJC3 = i

IF (UELTa (l,u ) .lT.O.uO) i.vji = -i
IF (j.LTM2,L>.l.r.j,iC) l^';2 = -l
IF (i:LLTa(3,l).LT.j.O) i>lCJ--l
Di(l)»Atii(Dt:LTA(i»L) J

L)i(2)=A6S(0fcLTA(?,L ) )

0L(3)=A3S(0£LTA( 3,L )

)

li- (t .u-.iPi ) Go To iC
D2<i )-AdS(D-LT4{i»L-» 1 ) )

J2(2) = 43i(0ELTA(2,L-»i) )

02(3)=A3S(JLcTA(3,L+i))
10 CjNTiNu:;

X liMC'^-JMtNTj

IF (L)i( 1) .GT.l.EO) GO Tu 3J
IF (L.Lt.IPl) GO TO 20
IF (u2( i) .oF.l.fcO) C J ID Z)

^iGU^JArY CulS Ti^iC;: dtlwrtN Hii PjI.nT ANJ II:) X NtlGribJKS

UlAO=2.cO»JX3c/(Ji(l)*D2(i) )

Tr Rf1 = 0.tC
GO TO ^0

6l)UN3aPY CUTi UNCi di.T^t^N ThiJ PUlM ANL lTi> X NciGHduRb.

20 CrjNTlNUt
LaAG = 2,(-;c*jxSw/D.(i)

c.



83

C

c

c

c

c

c

c

c

c

c

ISUB»I-INCl
T-PM-».(iSu9>J>K)*2.'G/(l..J*Jl(l))
GCJ TO ^J

BOUNUARY 0Or;S NOT CJT

30 DlAG = 2.Ei-*0XS0

^0 SUM•=-TER^*JXi)e

Y INCR-ficNTS

IF (UKZ) ,GT.1.£G) Cu Tu oJ
IF (L.Lc.IPl) GO TJ ;0
LP (D^(2).&T.1.£0) bu Tj >j

iauNi)A«Y CjTS r^lL; j:Trtc:N TiiS PCjii'-T A^J i[S Y iNLiGHdUKS

jIAG-DUC + 2,;C«QrSJ/(&i(2)*L}^(<c))

GJ TO 70

iOUNuARY CUTS GNC- rJtTWLtN Tii3 PLiNT Ar^u ITS Y NlIoM&JRS

&0 CONTINUE
0IA& = ulAG + 2.cC*wYSw/';l(2)
lSUb»J-UCZ

GO TO 7u

BOunOAkY DJcS njT Ctl

bO 01 AG=uIAG+2.cO*CYS«
T:KM»rt(l*J-l»K)**(l^J+i>K)

70 SLM = bo^-T£k^'*^JYSQ

Z iNCftcr'cMTi

IF ( D i ( 3 ) . G T . 1 , ._ ^ ) G LI T L VJ

IF (L.Lz.IPl) bu TJ 8

IF {D2( 3) .GT.l .cC ) Gj TO So

'^Q'0^^^'^1 wuTS Tn/C. .- } T w n J-\ii> t'JirT AN J ITS Z ^i:»G^:iO^S

DIAG- LIAG + 2. :, C/ (J. (3)*02( J))
TLRn=»b.bC
GO TG iOC

oGUKiyA^Y CuTS uNCr i c T « i. c ^( TliS PUINT ANiJ iTS I N^IoribLiKS

eo CONTINUE
jifib = l-l4 0*2,tC/01(:5)
i;Ub»K-INC3

GO TG Ij<.

d lU ft 1/ A .< Y QJtS r-JT CuT

9j DIAG=DI AG+2. .

t

Tt'<ri = w( I^J»K-i)+*i ( i* J^Kti.)
iO'J SUM -SU.'I-T .-<M

tb
S.7
t ;»

^9
60
61
62
63
b't

65
6b
67
6^
69
7J
71
72
73
7-t

75
7o
77
70
7-t

fcO

^1
c2
f-3

H<t

fcp

to
e 7

b:>

fc9

<;o

9i
<72

«.3

'.t

<i5

«>5

97
«ri

99
ICO
lOi
iC2
1C3
10-4

1C3
1C6
107

F ICd
r iOi»

F IIJ
r il^

112
Hi
11^
IIP
Ho
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110

SCAL
Y(LK
COKT
RrTU
tND
SUBk

IGRD,
COMM

DIilE

lie 'JO

LOGl

E»l.EO/( JlAG+CHZZ)
T)»W( I» J»^)+iUM*SCALL
1NU£
RN

B.nukY (riCX*aCY»,-iC2>G»NXLiiri*NYuir*>t2i;i1*NlPuIM*Ui:LrA,iCu

JPX»COiNST>C»CHZZ»NX/NY

GUTINE
db)
Ory /SPAC-/ HX,HY>nZ»HZ( i)>riXL>HY,i;>rlZ2*T
IPI/IP2*lP»LaG2NX,LGCZNY*JXSJ#(jYSQ
NSIJN 6CX(N1?DIM)* BCYCMPDII^)* tSCi ( MP u if. ) » Dt LT A ( i» Ni Pui.1 ) *

KU(3*NiPDiC.)* 01(3)f JZ(3)* GCNXGifUNYCn^NZJIM)
CAl 83

T

THIS SLBt^OUllNt Cui'.PUTtS BOX = U F

USING bDJNJAkY DATA bTuR^O iN bCX* bCY» ArO 6ZLf
AND THt OATA IN G,
THIS IS TH: KIGHT HAND SiOt i-OK Tml CAPACirAiNOc MATRIX
tQUATION. i'. ;^.
THt RESULT IS DETL^MINElI Br APPLYlNu THE SHOKTlLY-
WLLLcR APPKUXlMATlOi'-f CF -LAP + CC AT aN IR<EbbLAk
PGIkT and OIVlDl'Nb 3Y T.-iL iCALL FACTbR uS^J 1 in uTA^IlT
AND UTATRN.

DU IIG LKT-l»iP

GET CGORDInaTEj AND DISTANCES F Ljk THiS IRkcGoLAk PuiinT.

l = lkt
i-icaa«D(i»Lj
J»ICuuRD(Z*L)
K»ICG0RD(3»L)
IF (L.GT.lPl) L=IPi+(L-IPi) Z-i
Dl( l)«AiS(OHTA(l,L ) )

Ul (I )*A3S(0ElTA(2»L )

)

Dl(3 )=Ac1S(0ElTA(3,L) )

IF (L.LE.IPI) GO TG 10
D2{i)-A3S(Dl LTA(i,L-H )

)

D2(2)=AaS(D£LTA(2*L+i) )

D2(3)»A3S(0ELTA(3,L+i) )

10 CONTINUE
TtKMi-O.tO
TEPM2»0.E0

X INCRr.rtcNTS

IF (Ui.(l).3T.l.c-^ ) GU TQ 30
IF (L.LE.IPI) GG TG 20
IF (02(1) .GT.l.cO) GG T 3 2J

POU^DAKY CJTS T-<iC~ i/.Tw^-.N Trii S PuiNT ANj ITS X NtithriUKS

DIAG-2.cC*QXSU/(Dl(l)*D2(l))
TERM1=2.E0/((L1(1)+C 2(1 ))>!(!))
Tt:RM2»2.tO/((01(i)+C.2(i))*j21i))
GO TO ^0

BUUNOAPY CJTS JNCl tsETuciN THIS PUii»T A.-tC iTi a .NclbHduKS.

20 CGNTINUE
DlAG=2.E0*0XS&/0i (1)
TERMi = 2.t0/((l.E0 + L)l(l))^Jx(l))

F
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GO TU ^•j

BOUNDARY OOEb .«.JT CuT

30 DlA&=Z.cC*QXSO
'tO SUh = -TERM*QXSO*dCX(L)

IF (T:Rni:.NL .t .10) SUM«SU,i-T.KM^*UXSa*bCX(L + l)

Tf:»Ml»0.fcO
TLP^1^*^.L0

Y INCRcMfrNTS

It- (Ui(2).GT.l.tC) C- TJ oJ
IF (L.Lc. IPi) GO TG i>Q ^^

IF {D2(2) .GT.l.L-O) GtJ TO ^j
-' s r V .i I : - •.

BOtNOAKY CUTS TwKi BtT-^,cN THiS P31NT ANj ITi Y NGlGHdOkS

0IAG=0IAG+2.cO»UYSO/(01(2)*D2(2))
T£Pl^l = 2.tO/((Ci(2) + L2(2))*iJl(2))
TckM2 = 2.E0/((u1(^)+L£(2))*l)2(2))
G'J TC 70

fUUNuARY CuTi ONCc otTrtt.!:^ THii PJixT AND i FS Y NdlGHbOKS

bO COMINJl
UIAG = UIAG+2.£C*OYSQ/iJl(2)
Tr.'JMi-2. tC/ ( (i .cJ+L'J (2) )«Ji(2) )

GJ TO 7

J

•)uun)aky o'Jc. s not .ur

6C 01 A6-JlAG-»2.i:C»UYi;u
70 i)JM=6on-7£krti»aYSu*DCY(L )

IF (Ti <?12.NE.C.iiC) SoM = Sud-TLRM2»QY:jJ*oCY(L*i)

z I^C'<c^ENTJ

If (l/i( 3) .GT.i.tO ) GQ TO -^0

IF (L.Lc. .1 Pi) GO TO &(•

IF (L2(3) .GT.l.tO) GJ TG aJ

EOUNDaSY CjTS T-.ICt a.Tw.cN THIi PJii\T ANJ 1 F :> 2 NElGHBOkS

JlA&=L)l46 + 2.cO/(Dl(3)*."'i{ 3) )

Tr-^Mx-Z.LQ/CCLKBJ^C^tJJJ+JKi))
THPH2=2.tO/((Ll(3)*C2(3))*J2(3))
GO TO IJG

tiOUNOARY CUTS ONCE dETwtC-l THIS POINT ANu ITS Z NEiGnbORS

bo CJNTIMJE
Ul ftG = UlAt + 2.=G/Dl (3)
T^><Ml=2.cO/((i.t.G+Dl(3))'»i)U3))
Gf' TU IOC

--iOUi'ML'ARY DOcS NOT CoT

90 L)I AG = tJI aG + 2. cO

G
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ICC

110

c

c

c

c

c

c

c

c

c

c

IF (TtKt^Z.Nt.O.EJ) Su.M«SLfi-TLKM<i*eCZ(L-»-l )

SCALL = l.tO/(DIA&+CHt/; )

GTi:kl«l«0.fcO

iSU»^l = ICija»0(l>LKT)
ISUB^-ICG0»U(2*LKT)
ISU83 = ICLaKD(3*LK T)

IF {6ti) GTcR>l = G(Iiuei> liU:ic:* ISod:>)
BCX(LKT) = (-Sur + &T£Sf^)*SC/iLd
CONTINUt
RETURN
tNO
SuBkGuTiNt UTaTKN (Yfw*N>U^M*.NYLJlM>NZDx.'i>^lPJirtf3LLlA, lCUUt«D)
CGMMGN /SPACj/ riX>^Y^HZfr^2(i)*HXt*MYi*hZ^*TWJPi*-LJ^ST*l.>J^liLZ*NX*^r

l*NZ*IPi»iP2»lP*L3biNX,LOGrNY,JXSC*uYSO
OIMfcNilJN ^(iNXl)L'^#NYuIt'i,NZ Ufl)* C^{J)> JLiiif ucLT A ( o* N iPu i M ) / iCO

10K0(3f NiPOifl)* Y(MPt.Ii-i)

DIMENSION wINC(7)

T T

THIS SL3«0UTiN. CLilPJTti W - (u A) Y.

w li iNlTlALlZtO 1j Aim) THtN THl WcIlHTj LtTti<niNtJ iN
UTAMLT ARt; UicD TG DIoTi<Itiu(c Y.

OU 10 K»1*NZ
OJ 10 J«1*NY
D'J 10 1 = 1, NX

10 w( i» j,K) =o,';o

DO 130 LKT = 1, IP

20

3U

L = lPi-KL-; Px)»!i-i

GET CGQiiJINATcS aNO uISTanC;

L = LKT
I*ICGU'<D(1,L)
J=ICU0t'a(2/L)
K«ICGu'<D(3*L )

IF (L.GT.lPl)
Dl(l)=ABS(L)ELTA(i,L ) )

01(2) = A9S{iJtLTA(^,L))
Dl (3)-A3S(Dt:LTA(3,L ) )

IF (L.LE.IPI) GJ TJ dO
Di:(i)=Ati^OtLTA(l,L + l ) )

02(2)»A3S(Dt:LTA(2,L + l ) )

U2(3)*AiJS(0i:LTA( J,L + x) )

CQNTiNUl
INC1*1
lNC2»i
iNC3=l
IF (UiLTA( 1,L) .LT.j.;C)
IF (UcLTA(2*L).LT.u.cO)
IF (UlLTA (3,l) .LT.o.cC)
9 3 KK =1W
WINC(KK) '0,tO

fUK TrilS lH'i<;c6oLAk PUiM,

i;-iCi--i
lixC2 = -l
i NC 3 = -j.

X CunTRIBJTIONj

IF (l)1 (1) .GT.i.t J) Go Tj jO
IF (L.Lc.lPi) bO TO 'tO

IF (U2(i).GT.l.E0) Gu TO -tO

boundaky Cuts t-iC:^ aLi<.:tN ni:> pjim and irs x NicioHaohS

i2J
121
122
12j
12^
12j
126
127
12b
129
13J
131-

1

2

3

D

I

"i

IvJ

11
12
13
I't

lb
lo
17
Id
1-^

20
21
22
23
24
2^
26
27
23
2 V

30
31

32
33
S-f

33
36
37
31
3<y

'i J

41
4^
43
44
4d
4t)

47
4b
49
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c

c

c

GO TJ OO

tJUNuA-^r CUFi jinCc dCTwccN His PljINT ANiD iTi X NtioMSOKS.

^U COnTiNUl
i)lAG«^.cC-*JXSU/Ul (1 )

I3Uo"^-lNCl
«lNC(iSurt)»-OXSQ*Z.l-^/(i.cJ*Di(i))
bO Td 60

aOUNDAkY OJ-S NJT CUT

t)0 DI AG = <c.cO*QXiy
wiNC(i)»-axsa
«inC(3)=-JXSQ

Y CuimTKI-JUTIGiMS

fcO IF (01 (£) .GT.l.to) Cj TU cJ
II- (L.L:..IP1) Gtl TO 70
IF (Jc(2).GT.1.eO) C-J T.- 7J

BOUNDAi-T CjTj TwIC- icThct^ This PJli.T AfO ITi Y NtiGHSQKS

UlAG = 0IAb+£.^:0*JYiJ/(Dj.(.J*L)^(2))
GJ TO iO

aOLAjAitY curs C\CL 5i:T«Lu>i THIS ^'JIisT AnO ITS Y NclGHBOt^S

7u CG.NTiKoE
D1AG«DIA&+2.L0*UYS0/Di(^)
1SU(^ = 3-INC2
WlNC ( 13Ue)--JYSJ*2.tv./ (l..o-»-01(2) )

GJ TU ^0

eaUNDARY OQLi NOT CUT

80 LUAG = iJiAG+^.i.O*uYSO
aIINC(2)»-JYSJ
WlNC (^ )=-C'YSJ

Z CJNTRltJJTIONS

90 IF (Ul(3) .GT.l.rO) GO TO iiO
IF (L.Lc.IPl) GO Td iCO
JF (U^(3).Gr.l.E0) Gu TJ ijO

-iOUi^OAri Y CUTS T/JlC; i^cTWccN TrIiS PJir.T ANl) ITS Z N£1GH60kS

DlA&»UlAC+2.tC/(J113)*0 2(i))
G;j TO iZC

BQUMUA-^Y CUTS O'NCj or1»iz'^ THIS PULsT AMD iTS Z hiElGrtiOKS

loC CONTINUE
l)IAG = GIAG + Z.cO/l)1 (3)
1SUB=6-INC3
wj>JC( iSUb)=-2,cO/ (I.t0 + Dl(3))
GO TO 12l.

51

t>3

5^
55
53
57
56
5?
60
6i
62
63
64
65
66
67
6d
69
70
71
72
73
Tf
75
76
77
7a
79
80
61
b2
63
6<»

65
86
b7
68
89
90
91
92
93
94
95
96
97
96
99

100
101
102
103

H 104
H 105
H 106
H 107
H lOd
H 109
H 110
H 111
H 112
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t^UUNOAKY Dots in3T CuT ri

H
110 OiAG = u1ACj + ^.cC ri

«INC (i )--l.^ J H

WlNC(7)=i-l.E0 rl

120 CONTlNJt H

FACT=Y(LM) /(ClAo + ChZZ) H
W(I*J»K)=w(I*J»K)+Y(LKT) H

^,(I-l*J»K)-w(l-l*Jf^J+FACT*-Ji^lC(i) H

W(l*--l*M = .*ll/J-l»l')+»^;:CT*wixC(;i) ri

w(I + l>J,K)=W(I+l*J»K)*FACT*»ii.NC(3) H

w(iSJ + l*M=w(i^o*l*l')+PACT»WiNC('t) ri

W(I» J>K-i)-W(l» J*K-i)*FACT*rtiNC(; ) ri

w(I*J*K+i) = W(l»J^K,-»-l)*FiCT»«iNC{7) ri

130 CDNTIixUt ri

ktTURN ri

EnO H
SuakOUTlNr Cuee ( F^NAQir^NrDii^^NZUll'i/NAPJi.M^Kfc)
COChCN /SPACE/ hx»HYfriZ»n^(iS)*HX^>^lY2*r1Z^»T•<JPi*CGNST>C»CriZZ*^X*^Y
i*NZ*lPl»iP2»lP»LuG2NA#LGt.a.N.Y*JXiu*uYi>J
DIMENSION F (l^(XDIM»^YL'in>^Zu^l1)> Kt ( NAPuin)
CGi'inGN /FFT/ S(6<»)* 1 J(r:vc )

THli) :>LbKC'UTiNt SDLVcS THl HtLNHuLFZ tJUATlUiN JVfck A Cube;

-U - U - u l,*J = F/(hZ*rtZ)
XX YY IL

• llri F=U DuTSIJE l.-it CLjc xN TnL I D^rfcJIiDN a,nC U

PEr-'IGOIC In X ANO f RiTri PhRiJuS i.
THt AnS*i;lK IS STu^:J l iv r,

ANY -iEAL VALUE OF C Cam ijE HANOL- U oY THib FQUi^lEK-
TUr.PLITZ Mel MOO.
Kk IS uStL) AS -Gf-^SPACc ra inTLSFaCl wllri Trie

FFT i^CUTiWtS. Thi Diil^NSlONS bF S ANJ li MJST
BE .GE. N/<. AND .N kcSPtCTivELY/hriLKi. 'A= MAXdNX^NY).

1FS--2
10 IF (NX. £(..!) GJ TG tC

NZ1=NZ-1
CALL kFJkT (f<t *LJc2^x,C*^Z»NAPL}Il^)
DG ^0 J=i*NY
L-0
DJ 20 «>=1»NZ
OG 20 1=1, NX
L=L-H

20 !<t.(L)-F(I, J,K)
CALL kFQkT (r^t^LOGZfvX, iFS^NZ/NAPCih" )

L^O
DG BO K=i,NZ
OG 30 1=1, SX
L-L + 1

30 F{ I, J,KJ=kt (L)
^0 CGNTINJE
50 CONTlNUc

CALL i<Faf.T (*^t,L3G<:NY,U>NZ*NAP0IM)
DC 80 I«1,NX
L=0
00 bO K=1,NZ
Ou 60 J»1>NY
L»L + i

fcO «E(L)=F(1, J,K,)
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70
BO

CALL kFJkT (Kt.*LQb:^Nr*iFi*4Z/NAPDlr'i)
L =

DO 7u K-1*N2
DO 70 J-i»NY
L»L + 1

F( i* J*K)=Kl(L)
CONTlNUh

SOLVl ThL TkIUIAGJtaL S'<:>\tt'.:>

IF (IFS.OT.G) GJ TO dl^
NX02=2**(La62NX-i )

NYO^-^**(LGb^^l('-l)
00 ^10 LY=1,NYJ2
COSJ»CGS(T«/OPl*FLOAT(LY-i)/FLOAT(r.Y))
DO 210 KTJ=1,2
J«LY*2+KT J-2
DO 210 LX»1*NXD2
cosine OS (r*<OPl«FLOAT(LH-l)/FLJAr( NX))
DO ZiO KTI=1»2
i-LX*^*KTl-2

LX » iNTcGdR PART uF (i-i)/2 + 1

LY = INTtbER PAkT of (I-i)/2 + i.

TkIUIAGONAu SYbTtr. wlTh
0IAo3N/!L ELtMEt-TS Td^li anO T(^^Z*^^Z) = XLi.i>J*/2

+ iU^T { (XLI'.ciJA/2)**2 - 1).
Trit JThER OIA^,b^AL ELch^.Nfi = XiKbuA, -I IH iUi- A.Nl-

SUPtK-DUGONAL.
th:; Ti^idiagdnal syst.m is;
TV = G b(K)=t-(A#J*K) (=ii...*i>iZ
stuRc »/ in f

COMPUTt XLMbDA

XLM30A-CDNST
IF (J-2) 110/<VJ»100

90 xlmbda»xlmbda + oyso*2,e:g
GO TO lie

100 XLMtiUA»XLM3DA4JYS3»(l.^j-C JSJ)
110 CONTINUE

IF (1-2) 140*120»13C
120 XLMBDA«XLM3DA+JXSQ*2.[.C

GO TO l-to

130 XLMDDA»XLM30A*JXSQ*(i..i.-CJSI)
140 XLMbDA«XL«!iDA*2.tO

DISCK2-.2i>EO*XLndUA*XLMBUA-i.;u
IF (D1SCk2.GT,0.E0) GJ TC 170

-2 .LE. XLMBDA ,LL. 2

PHI = ARCCOS(XLMBDA / c)

F(I/J,K) V(J) - SUM(F(i»J»K) birH(PnI«ABS(I-J> ) ) /

(2 SIN(PHI) )

WHERE SIN( (N + i)PHl ) / biUPHI) = UN(X) =

N-TH CHi'JYSh;\/ PLlLY,^(U^1iAL

AND X • XLiiBDA / I,



90

VCK + l) ' XLM3DA V(K) - \/(K-j.) - G(K)

UC-XLM80^/2.iO
V = K1* J*1)*UC
DO 150 K'2*NZ
UCi'(2 = UCf11

UCM1«UC
UC«XLr3LU*'JC11-UCf2
V»V + UC*F ( I» J^K)

150 C'JMiNUc
G-F(I,J,2)
F(I*J*2)*XL.-l6CA*\,-f(l*J*l)
F( If J*i)=V
Ju 160 K=3»nZ
52-F ( if J^K)
F(l*J*K)=XLrtdDA*^(l*JfK-l)-^(l»J»K-2)-0

160 G=G2
GO TO 20C

XLndL)A.GT.2 UK ,LT. -c

SOLvc THc FACTOR-D bfiTLi

17o !)iSC^ = S0•'T(L)iS^;K2 )

IF (XLMiiLfi.GT.O.cO) ulSC^'-DiS^ri.
bEI«titO*XLMBOA + 01SCi'

FUKwARU SUBSTiTuTiOts

10 IBu KK=1>n21
K-NZ-KK

IbL F(I»J»K)=Fll#J,K)*F(i»J»K+l)*itl

BACKWARD SUBSTITUTION

F(I> J> 1) "FC if J*l) *:![ 1

DU 1^0 K=2»nZ
F(I*J»K) = (F(l>Jfl<.)+t(I*JfK-l))*Btl
CCNTiNUt
CQNTi.NJ-.

IFS»-iFS
IF (iFS.GT.O) GO TO 10
CONTINJF
K-TURN
END
SUBkOUTINc Ri-LRT ( Afhf ll-S* iMf rUPuir)
uIMLNSIO^ Al^lAPDIf.)
COMfiJtN /rFT/ i ( 0^ )f 1 --1 (2Lc )

THIS IS AN AUGJST i97o V.-.i<SluNfA SLIGHT t^i\JiSlUU OF

A PkJGKAM GBTaInlC Ff<aM tl» pKiJSKUrOwSKi.hlS COUt IS

BASlD on a CGDr 01. TO J.CLl3LfcY.

THIS SuBROUliNc Sl.-.uLlA HjojlT LUiPoT::S Th; R::AL FFT

OR THd INV\;KSL rFT OF M.^ VLCTJRS OF Lci\GTH N.HbRE
«H iS AN AKeiTKA''Y PJSiTiVt INTtGtK ANu i\'Z**h wiTrt

M AN INT-Gch .Gc. 3. THc aKkAY A IS Qh LcNGTM N + .1M.

N»Mf1 illST St .Lt. •nAPOM.

IFS IS A pARAh.T::K S.l oT' THb lSLK.

19t
200
21C

220
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FOR IFS»0» HE A-lkAYb S ANU Id AKt Gc.<.i<AT;l) .S IS

A TABLE OF SINE VALLcS A ^0 lb A t* t PR t j t NT A 1 1 jN uF A

Pt«.fiUTf TIOn used in Tml JiNAHr KtUkDL*i.'(o D» THt OmTA.
THL ARKAr A IS UNAhFcCTcJ bf ThIS CalCuLATION,

FOh IFS»-2»EaCH Sl-iAKhAf JF A^LF LENbTH N*tS KEPLACcD
BY ITS FFT.THL CuSlNi C J . r-F ICi. NT S AKc STJKll) *IN JkL)hK

OF INCkEASING FRLuUEnCY* In PuSlTiuhj i# 3» p> . . .* N-i AnO

2. THE SIN^. CGEFFiCI^NTS mKl In PUSITUNS <itbp , , ,fHt

FCIH IFS=2*rHf: iNVtxSu Fl-r iS SIMILARLY JeTAlKcD.

THIS SU3KJUTI^h USfcS ^ :Gfi>'Lc> FFT kDuTINE FukT.

IF (IFS.Nt.O) &j Tu 10
CALL FJKT ( A/M*0* i^1,UAP01M)
RETURN

10 CONTINUE

N2=2*N
NV2=K/2
NV2M2-NV2-2
MM1=M-1
NP = N

MP = h

KD-NP/N
isPv^ = hiP/4

IF (IFS.&T.O) GO TfJ -tO

Call fgrt ( A*^;1l>-2^^lh>^fl?•JiM)
KM! N=2
KMAX»NV2h2
LN = N

DO 3u L = l*Mf'.

KT = K(3

00 20 K"KMINf KMAXf 2

J = LN-K
Aik = A(K,*l)-«-A( J + 1)

AlI = A(K*-2)-A( j + 2)

A2R-A(K*2)4-A( J+2)
A2I=A( J + 1)-A(K-H)
KKT«NPV^-KT
Awfc=A2R*S(KKT)+A2 1*S(KT)
AwI-A2I*S(KKT)-A2R+S(KT)
A(K+1 )»( AiR+Aufi )*o.2p
A(K + 2)» ( Ail + Awi ) »0,2!;

A( J + l) = { AlR-A»,K)*0.<;:i

A( J + 2) «( AWl-Aii)*o,2'.
20 KT=KT+KO

T=A(KrtIN-i)
A(KrlN-l) = (T + A(KMlN) )*u.i^

A{KM1N)«(T-A(KMIN) )*0,5
NK=NV2+KhlN
NKi=NV2+KMlN-l
A(NKl) =.t*4(NM)
A(NK)«-,i»*A(NK)
KMIN»KHIN+M
KMAX»KMAX>N
LN=LN+N2

30 CONTlNUc
RETURN

40 CONTINUE

J
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50

60

KMI
KMA
LN"
DO
KT*
00
J"L
AIR
All
AW-t

AWI
KKT
A2R
A21
A(K
A<K
A( J

A( J

KT»
T = A

Z = A

A(K
A(K
NK =

NKl
A( N

A(N
K.rl

KMA
LN =

CON
CAL
RET
tND
SJa
DIM
DOU
cor

N
X

N

60
KD
50
N-
= A

» A

= A

«A
= N

= A

= 4

1

+ 2

+ 1

+ 2

KT
(K

(K

Ml
Ml
NV
= N

Ki
K)
N =

X =

LN
TI
L

UR

2

Ny/2M2

L=1»MM

K =

K

(K +

(K +

(K +

(K*
Py/^

«*<
)-A
J'A
)=A
)»A
KO

MlN
MIN
N-1
N) "

2+K
V2 +

)=2
«-2
KM!
KMA
+ N2
NUc
FOR
N

M1lN.KMAX*2

1)+A( J+1)
2)-A( J+2)
1)-A( J+1)
2)+A( J+2)
-KT
S(KKT)-A«I*StKT)
S(KT)+Awi*S(KKT)
lk-A2I
1I+A2R
1R+A2I
2?-AlI

-1)
)

)=T+Z
T-Z
riM
KMIN-1
.0*4(iNKl )

,0*A( NK)
N + N

X+N

T ( A*ni11*2*rM*NAHJii1)

tNSIJN A(NAPOIM)
BLt. PR-cCISlON J«iTAN
MON /J-FT/ Sio-^ )f lL<(2:>c)

THIS IS AN AUGUST i978 vuRSiUN^A iLloHI k;,/ljljN JF
A PKJGkAM JbTAlNtL FKON w . Pfi OSK UK J W b^ I . H I i CuOc IS

6AStD GN A CGOt J\jL TO J.CjOL^Y.

THfc CGhPLEA FFT JK He i^iWc^Sc CUhPLcX FFf Uk a

TABLt iS C jMPUTt:D.S£L FJKrrii^c THt CuhicNTS OF
SUtJfiGUTlNi rFGKT.

N«2**M
IF (IFS.Nt.O) GO TO ^C
THcTA=0ATAU(1.00)
NT=N/4
MT=M-2
IF (MT.Lr.O) GO TO t\

JSTEP-NT
J0IF«NT/2
S< JD1F)=SIN( THETA)
IF (MT.LT.2) GO TO 30
DO 20 L«2*MT
THtTA»THtTA*J.5
JSTEP2='J1TEP
JSTi P = JJ1F
JDIF-JDXF/2

:.INl

7!i

79
FO
bi
ti2

h3
e't

bo
fc7

68
69
90
«.!

^2

9^

^6
<;7

ICO
ICi.

i02
103
ICt
103
lOo
iC7
1C3

110
111-

i

2

3

<t

6

7

d

10
li
12
13
It
la

lb
17
le
19
20
21
11
23
2^
23
2d
2 7

2
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S( JDih ) = SiN( ThtTA)
JC1=NT-JDIF
S( Jti) =CDS(TH£TA)
JLAST«NT-JST=P2
IF ( JlASI .LT. JSTdP) GO TD 2u
DG 10 J = oSTLr'» JLAbT* JSTtP
JC=NT-J
ja = J + JOU

10 S(J0)-S(J)*S(JCl)*S(JDiF)*3(JC)
2U CONTiNUc
30 CONTiNUe

DO 'tO I = i»N
't i f< ( 1 ) «

DG 70 l='c,\HfVZf2

IF (I.G..J) oO TJ bC

1B( 1)-J
t C. K » N 2

faC IF (K.GE.J) GO TO 7(.

K = K/«i

GG TO oO
70 J=J+K
60 COMIKJE

Kl TUxH
90 CGMiNue

K2«2*N
i^T = N/2
Mn2«MM+N2
O'J lib i = 2/N^>2
IF (IB(I ) .tQ.C) GJ TO lie
lk«0
00 iOt L = l*r,.n

J« Ib( i ) + !«

K=i+Ik
T"A(K)
A(K)xA( J )

A( J ) =T
T=fl(K-l)
A(K-i )»A( J-1

)

A( J-1 )=T
IR=Jk+N2

lOU OGNTiMJE
ill' CGNTINU-.

IF (IFS.GT.O) GO TJ 130
FN = N

FN=1.0/FN
JO 120 l=2>/.N^f2
A(I-i) -A( I-1)»FN

120 Ad )=-A(l )*FN
130 Dii I'tO I=2»MN2/4

T=A(i-l)
A( I-i) «T+A( 1+1

)

A( I + l) =T-A( I+l )

T = A( I)

A( I)=T + A(i + 2)

l^v; A(I*^)«T-A( 1 + 2)

L6XPi=2
L £ X P = c

NPL = 2**(''-1)

K
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li/U

IbO
170

IdU
190

200

210

OD Z<H) L"2*M
00 lt>G I=2>MN2»LlXP
Il=I+LEXPi
x2=ll*LcXPl
I3«I2*-L^XP1
T=A(1-1)
A( I-i)«T*A(l2-l)
ft( 12-i)=l-A( 12-1)
T-A(I)
A(I)=T+A{12)
A(I2)=1-A(I2)
T=-A(13)
T1»A(13-1)
A(I3-i)=A(li-l )-l

A(I3)»A( I1)-T1
A( I1-1)=A(11-1)+T
A(11)«A( ll)*Ti
IF (L.tJ.2) Gu TO IVO
JhAX = L(:XPl

DO 1(30 JI'ilN*^* rlN2>N2

KLAST=N2-L£XP
JJ-NPL
UU 17u J»JHLo J^iAX»2

I^^PJJ = ^T-JJ
Uk=S(NPJJ)
Ul-S (J J)

ILAST=J+KLAST
DO 160 I = J> IlAST^LlXP
11=I+LEXP1
1 2 • 1 1 L ; X P

1

I3=I2+LtXPl
T=A( i2-l)*UK-A liZ ) LI
Tl=A{I2-l)*Ui+A( 12)*UK
A( I2-l)«6(I-i)-T
A(I2)=A(1)-TI
A( I-1)»A( 1-1)+T
A(l )=A(I)+Ti
T«-A(13-: )*Ui-A( i3)*U'<

TI=A(I3-1 )*UK-A(1 3)'U1
A( IS-D'Adl-D-T
A(I3)=A(]|1)-Ti
A(Ii-x)«A(ll-l)*T
A(I1)=A(11)+T1
JJ = JJ-«-NPL

JMAX = jrlAX + N2
CONTlNUu
LcXPl-2*LbXPl
LEXP='2*LBXP
InPL=UPL/2
IF (iFS.GT.O) ktTUkN
00 2i0 I-2*MN<:*2
Ad )=-A(l )

RtTURN
END

K
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This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:

A. Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report

.

As used in the above, "person acting on behalf
of the Administration" includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.












